Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Verhältnisrechnung Zusammengesetzter Dreisatz - Doppelter Dreisatz

Zusammengesetzter Dreisatz - Doppelter Dreisatz

In diesem Lerntext zeigen wir dir, wie du Aufgaben mit doppeltem Dreisatz lösen kannst. Die Grundlage für dieses Kapitel bildet das Wissen über den Dreisatz und über proportionale und antiproportionale Zusammenhänge. Falls du also weitere Informationen zu diesen Themen benötigst, gelangst du über die verlinkten Worte zu den jeweiligen Themenseiten.

Doppelter Dreisatz - Beispielaufgabe

Bei manchen Aufgaben sind so viele Informationen gegeben, dass der einfache Dreisatz nicht ausreicht. Solche Aufgaben löst man mit Hilfe des doppelten Dreisatzes. Wichtig ist dabei, wie bei jeder Verhältnisaufgabe, dass du zuerst überlegst, ob es sich jeweils um eine proportionale oder eine antiproportionale Zuordnung handelt.

Wir schauen uns die folgende Aufgabe an:
Eine Firma beschäftigt zehn Maurer, die ein Haus in 24 Tagen, wenn sie täglich acht Stunden arbeiten, fertigstellen. Leider ist einer der Maurer nach dem 18. Tag erkrankt. Schaffen es die restlichen Maurer, das Haus rechtzeitig fertigzustellen, wenn sie täglich eine Stunde mehr arbeiten?

Doppelter Dreisatz - Beispiel berechnen

Beispiel

Beispiel

Hier klicken zum Ausklappen

Beim Lösen der Aufgabe gehen wir schrittweise vor:

Wir müssen im ersten Schritt berechnen, wie viel die übrigen neun Maurer pro Tag an Arbeit leisten können. Dafür bilden wir den Dreisatz zwischen Maurern und geleisteter Arbeit pro Tag. Im zweiten Schritt berechnen wir, wie viel mehr die Maurer pro Tag schaffen, wenn sie eine Stunde länger arbeiten. Wir bilden also den Dreisatz zwischen Arbeitsstunden und geleisteter Arbeit pro Tag.

Wenn zehn Maurer arbeiten, benötigen sie 24 Tage, um ein Haus zu erbauen. Pro Tag schaffen sie also $\frac{1}{24}$ der Gesamtarbeit.

Logisch betrachtet muss es sich bei dem ersten Dreisatz um einen proportionalen Zusammenhang handeln, denn doppelt so viele Maurer bedeuten auch doppelt so viel fertiggestellte Arbeit.

Die erste Zuordnung, die wir betrachten, also der erste Dreisatz, ist:

$10 \;Maurer ~~\widehat{=} ~~\frac{1}{24}\; Gesamtarbeit\;\;\;\;\;|:10$

$1 \;Maurer~~\widehat{=} ~~\frac{1}{24 \cdot 10} \;Gesamtarbeit\;\;\;|\cdot 9$

$9 \; Maurer~~\widehat{=} ~~\frac{9}{24 \cdot 10}\;Gesamtarbeit$

Wir könnten den Bruch kürzen, würden dann aber nicht erkennen, ob das Resultat später größer oder kleiner als $\frac{1}{24}$ ist.

Im ersten Dreisatz haben wir errechnet, wie viel Arbeit neun Maurer an einem Tag leisten, wenn sie 8 Stunden arbeiten. Der zweite Dreisatz befasst sich mit der täglichen Arbeitszeit. Nun erhöhen wir die tägliche Arbeitszeit von 8 auf 9 Stunden und berechnen somit, ob diese Anpassung ausreicht, um das Haus rechtzeitig fertig zu stellen.

$8 \; Stunden~~\widehat{=}~~\frac{9}{24 \cdot 10}\;\;\;\;\;|:8$

$1 \;Stunden~~\widehat{=}~~\frac{9}{24 \cdot 10 \cdot 8}\;\;\;|\cdot 9$

$9 \; Stunden ~~\widehat{=} ~~\frac{9\cdot 9}{24 \cdot 10 \cdot 8}$

Der letzte Bruch wird jetzt noch ein wenig vereinfacht, damit wir besser erkennen können, ob die Maurer das Haus fertigstellen können:

$\frac{1}{24}\cdot \frac{81}{80}$

Der Bruch zeigt uns, dass die neun Maurer mit einer Stunde mehr Arbeit pro Tag, pro Tag etwas mehr als notwendig schaffen ($\frac{1}{24}\cdot \frac{81}{80} > \frac{1}{24}$), und somit das Haus rechtzeitig fertig gestellt werden kann.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7978