Mathematik > Zahlenlehre und Rechengesetze

Multiplizieren und Dividieren rationaler Zahlen - so funktioniert's

Inhaltsverzeichnis:

Das Multiplizieren und Dividieren von natürlichen Zahlen hast du bereits gelernt. Doch mit der Einführung der rationalen Zahlen kommen auch neue Schwierigkeiten hinzu. In diesem Kapitel widmen wir uns der Multiplikation und der Division von rationalen Zahlen und erklären dir die wichtigsten Regeln.

Rationale Zahlen

Merke

Merke

Hier klicken zum Ausklappen

Mit rationalen Zahlen sind alle Zahlen gemeint, die durch ein Verhältnis zweier ganzer Zahlen dargestellt werden können.

Ihr Symbol ist das $\mathbb Q$.

Multiplikation rationaler Zahlen - Regeln

Bisher hast du die Multiplikation von ganzen Zahlen kennengelernt. Die vier Regeln zur Multiplikation gelten auch bei den rationalen Zahlen. In der folgenden Abbildung sind die vier Regeln noch einmal dargestellt:

Die vier Regeln zur Multiplikation rationaler Zahlen
Die vier Regeln zur Multiplikation rationaler Zahlen.

Merke

Merke

Hier klicken zum Ausklappen

Regel 1: "Plus mal Plus gleich Plus"

Die Multiplikation zweier positiver Zahlen ergibt eine positive Zahl.

Regel 2: "Minus mal Plus gleich Minus"

Die Multiplikation einer negativen Zahl mit einer positiven Zahl ergibt eine negative Zahl.

Regel 3: "Plus mal Minus gleich Minus"

Die Multiplikation einer negativen Zahl mit einer positiven Zahl ergibt eine negative Zahl.

Regel 4: "Minus mal Minus gleich Plus"

Die Multiplikation zweier negativer Zahlen ergibt eine positive Zahl.

Die Abbildung und die Merkebox zeigen uns die besondere vierte Regel. Diese besagt, dass bei der Multiplikation zweier negativer Zahlen eine positive Zahl die Lösung ist. Das folgende Beispiel zeigt uns das genauer:

Multiplikation rationaler Zahlen - Beispiel

Beispiel

Beispiel

Hier klicken zum Ausklappen

Wir haben die beiden Brüche $\Large{(-\frac{1}{2})}$ und $\Large{(-\frac{3}{5})}$ gegeben. Diese sollen miteinander multipliziert werden. Es folgt also:

$\Large{(-\frac{1}{2}) \cdot (-\frac{3}{5})}$

Im ersten Schritt schreiben wir alles auf einen Bruchstrich. Hierbei können wir direkt die beiden Minuszeichen gegeneinander kürzen:

$\Large{\frac{1 \cdot 3}{2 \cdot 5}}$

Der zweite Schritt ist das Kürzen der Nenner und Zähler. Da dies hier nicht möglich ist, folgt direkt das Multiplizieren und als Lösung ergibt sich:

$\Large{\frac{3}{10}}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Division rationaler Zahlen - Regeln

Merke

Merke

Hier klicken zum Ausklappen

Eine Division durch NULL ist nicht möglich!

Die Division bei rationalen Zahlen folgt ebenso den vier Grundregeln der Division. Diese sind in der folgenden Abbildung und auch in der darunter liegenden Merkebox noch einmal dargestellt:

Die vier Regeln zur Division rationaler Zahlen.
Die vier Regeln zur Division rationaler Zahlen.

Merke

Merke

Hier klicken zum Ausklappen

Regel 1: "Plus durch Plus gleich Plus"

Die Division zweier positiver Zahlen ergibt eine positive Zahl.

Regel 2: "Minus durch Plus gleich Minus"

Die Division einer negativen Zahl mit einer positiven Zahl ergibt eine negative Zahl.

Regel 3: "Plus durch Minus gleich Minus"

Die Division einer negativen Zahl mit einer positiven Zahl ergibt eine negative Zahl.

Regel 4: "Minus durch Minus gleich Plus"

Die Division zweier negativer Zahlen ergibt eine positive Zahl.

Diese vier Regeln der Division gelten auch für die rationalen Zahlen. Doch die Division von rationalen Zahlen hat eine Besonderheit:

Merke

Merke

Hier klicken zum Ausklappen

Division = Multiplikation mit dem Kehrwert.

Du kannst, anstatt zu dividieren, auch mit dem Kehrwert multiplizieren. Wir schauen uns das an einem Beispiel an:

Division rationaler Zahlen - Beispiel

Beispiel

Beispiel

Hier klicken zum Ausklappen

Wir dividieren die beiden Zahlen $\Large{\frac{18}{5}}$ und $\Large{\frac{6}{1}}$. Der Term lautet dann:

$\Large{\frac{18}{5} : \frac{6}{1}}$

Auf einem Bruch ergibt sich:

$\Large{\frac{18:6}{5:1}}$

Die Lösung ist:

$\Large{\frac{3}{5}}$

Oder wir multiplizieren mit dem Kehrwert:

$\Large{\frac{18}{5} : \frac{6}{1}}$

Der Kehrwert von $\Large{\frac{6}{1}}$ ist $\Large{\frac{1}{6}}$

$\Large{\frac{18}{5} \cdot \frac{1}{6}}$

Alles auf einen Bruch schreiben:

$\Large{\frac{18 \cdot 1}{5 \cdot 6}}$

Kürzen:

$\Large{\frac{\cancel{18}\;3 \cdot 1}{5 \cdot \cancel{6}\;1}}$

Im letzten Schritt folgt das Ausmultiplizieren:

$\Large{\frac{3}{5}}$

Merke

Merke

Hier klicken zum Ausklappen

Um zwei rationale Zahlen zu dividieren kann man auch mit dem Kehrwert multiplizieren.

Den Kehrwert bildet man durch vertauschen von Zähler und Nenner.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Markiere die richtigen Antworten für folgenden Term:
$\frac{63}{12} : \frac{21}{6}$

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Welcher der genannten Terme ergibt $(-\frac{3}{4})$ ?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welcher der genannten Terme ergibt $\frac{9}{7}$ ?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welcher der genannten Terme ergibt 3?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7969