Mathematik > Zahlenlehre und Rechengesetze

Proportionale und antiproportionale Zuordnungen

Inhaltsverzeichnis:

In diesem Kapitel behandeln wir proportionale und antiproportionale Zuordnungen oder auch Zusammenhänge. Diese bilden die Basis für das Rechnen mit dem Dreisatz. Im Anschluss kannst du ja mit den Übungsaufgaben weiterlernen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Proportionale Zuordnungen

Damit du den Dreisatz anwenden kannst muss ein proportionaler Zusammenhang (oder antiproportionaler Zusammenhang) zwischen bestimmten Werten gegeben sein. Doch was genau ist ein proportionaler Zusammenhang? Hierzu ein Beispiel:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Wir gehen in den Supermarkt und kaufen 7 Flaschen Wasser. An der Kasse erhalten wir eine Rechnung über 3,50 € (wir haben Flaschen ohne Pfand gekauft). Wie teuer wären 14 Flaschen für uns gewesen?

Wenn wir das Ganze untereinander schreiben erkennen wir es besser:

$\textcolor{green}{7\; Flaschen}$ = $\textcolor{blue}{3,50\;€}$

$\textcolor{green}{14\; Flaschen}$ = $\textcolor{blue}{x \;€}$

Wir rechnen also beide Seiten der Gleichung $\cdot 2$ und erhalten auf der linken Seite die $\textcolor{green}{14\; Flaschen}$ und auf der rechten Seite genau $\textcolor{blue}{7 \;€}$. Das ist auch die Lösung für das Beispiel.

Wenn wir also den Dreisatz benutzen wollen, benötigen wir einen Zusammenhang zwischen zwei Werten, hier die Anzahl der Flaschen und der Preis auf der anderen Seite.

Ein proportionaler Zusammenhang ist also ein Zusammenhang, bei dem auf beiden Seiten der Gleichung dieselbe Rechenregel angewendet wird. Wenn wir also auf der einen Seite multiplizieren, müssen wir dies auch auf der anderen Seite tun.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Manchmal ist es jedoch nicht so einfach und man kann nicht mal eben "$\cdot 2$" rechnen. Wie wären wir vorgegangen, wenn wir nicht den Preis von 14, sondern von 10 Flaschen gesucht hätten? Die Rechenschritte hätten sich nicht groß geändert, wir hätten nur einen weiteren Schritt hinzugefügt:

$\textcolor{green}{7\; Flaschen}$ = $\textcolor{blue}{3,50\;€}$

$\textcolor{green}{1\; Flasche}$ = $\textcolor{blue}{y\;€}$

$\textcolor{green}{10\; Flaschen}$ = $\textcolor{blue}{x \;€}$

Wir hätten also erst einmal den Preis für eine Flasche ermittelt und dann den Preis für 10 Flaschen. Der Preis für eine Flasche wäre in unserem Beispiel $0,5\; €$, denn wenn wir beide Seiten durch 7 dividieren erhalten wir 50 Cent als Lösung.

$\textcolor{green}{1\; Flasche}$ = $\textcolor{blue}{0,50\;€}$

Jetzt nur noch mit 10 multiplizieren und wir erhalten:

$\textcolor{green}{10\; Flaschen}$ = $\textcolor{blue}{5 \;€}$

Und damit klärt sich auch, warum es Dreisatz heißt, denn man benötigt zum Berechnen von proportionalen Zusammenhängen 3 "Sätze" um auf die Lösung zu kommen.

Merke

Merke

Hier klicken zum Ausklappen

Bei proportionalen Zusammenhängen werden auf beiden Seiten der Gleichung dieselben Rechenregeln angewandt. Es gilt die Aussage: "Je mehr, desto mehr oder je weniger desto weniger."

Antiproportionale Zuordnungen

Es gibt aber auch manchmal Aufgaben, da hilft einem das Rechnen wie bei proportionalen Zusammenhängen nicht weiter. Siehe dir dazu das folgende Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Fünf Bauarbeiter bauen eine Mauer. Die Arbeit dauert genau 5 Stunden. Wie lange hätte die Arbeit mit 10 Arbeitern gedauert?

Wir stellen zuerst die Gleichungen auf und erhalten:

$\textcolor{green}{5 \;Arbeiter}$ = $\textcolor{blue}{5 \;Stunden}$

$\textcolor{green}{10 \;Arbeiter}$ = $\textcolor{blue}{x \;Stunden}$

Hier können wir nicht einfach wie bei proportionalen Zusammenhängen beide Seiten mit 2 multiplizieren, denn dann würde als Stundenzeit 10 herauskommen und warum sollten mehr Arbeiter länger für eine Aufgabe benötigen?

Hier müssen wir genau gegensätzlich rechnen. Wenn wir auf der einen Seite multiplizieren müssen wir auf der anderen dividieren.

$\textcolor{green}{5 \;Arbeiter}$ = $\textcolor{blue}{5 \;Stunden}$

Wir rechnen $:5$ auf der linken Seite und $\cdot 5$ auf der rechten Seite.

$\textcolor{green}{1 \;Arbeiter}$ = $\textcolor{blue}{25 \;Stunden}$

Ein Arbeiter würde also 25 Stunden benötigen, um die Mauer zu bauen. Jetzt multiplizieren wir die linke Seite mit 10 und die rechte dividieren wir durch 10 und erhalten das Ergebnis für 10 Arbeiter:

$\textcolor{green}{10 \;Arbeiter}$ = $\textcolor{blue}{2,5 \;Stunden}$

Merke

Merke

Hier klicken zum Ausklappen

Bei antiproportionalen Zusammenhängen werden auf beiden Seiten der Gleichung gegensätzliche Rechenregeln angewandt. Es gilt die Aussage: "Je mehr, desto weniger oder je weniger desto mehr."

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

10 Dachdecker decken 1 Dach in 5 Stunden neu. Wie lange brauchen 3 Dachdecker?

Teste dein Wissen!

10 Dachdecker können an einem Tag (8 Stunden Arbeitszeit) genau 5 Dächer neu bedecken. Wie viel können 2 Dachdecker an einem Tag decken?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Peter hat 4 Äpfel für 1,20€ gekauft.
Wie viel hätten ihn 5 Äpfel gekostet?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Zusammenhänge kann man mit dem Dreisatz berechnen?
Kreuze die richtigen Lösungen an.

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Zahlenlehre und Rechengesetze

Weitere Erklärungen & Übungen zum Thema

Potenzen addieren - so funktioniert's
Allgemeine Betrachtung einer Potenz
Potenzen - Definition und Beispiele
Potenzen mit negativem Exponenten
Potenzen multiplizieren, dividieren, potenzieren - gleiche Basis
Potenzen multiplizieren, dividieren - gleicher Exponent
Potenzen subtrahieren - so funktioniert's
L?ngeneinheiten
Zehnerpotenzen, Einheiten und wissenschaftliche Schreibweise
Übersicht zu allen Potenzgesetzen
Brüche addieren und subtrahieren - So geht's
So werden Brüche dividiert: Regeln und Erklärung
Einhalb und zwei Viertel.
Brüche kürzen und erweitern - so geht's richtig!
Brüche multiplizieren: Erklärung und Übungen
Was ist ein Bruch? - Definition und Beispiele
Bruchrechnung: verschiedene Brucharten
Wie viel Prozent der K?stchen sind gef?rbt?
Brüche umwandeln in Prozente - so geht's richtig!
Brüche vergleichen und ordnen
Logarithmus mit der Basis a und dem Numerus b.
Dekadischer, binärer und natürlicher Logarithmus
Drittes Logarithmusgesetz: Logarithmus einer Potenz
Erstes Logarithmusgesetz: Logarithmus eines Produkts
Wie löse ich Exponentialgleichungen?
Logarithmus mit der Basis a und dem Numerus b.
Kehrwertsätze des Logarithmus
Logarithmus
Was ist ein Logarithmus?
Was ist der Logarithmus?
Logarithmusgleichungen lösen einfach erklärt
Viertes Logarithmusgesetz: Logarithmus einer Wurzel
Zweites Logarithmusgesetz: Logarithmus eines Quotienten
Logarithmusgesetze - Übersicht und Beispiele
Wie funktioniert das Heron-Verfahren?
Was sind Quadrat- und Kubikwurzeln?
Wie funktioniert das teilweise Wurzelziehen?
Wie funktioniert das teilweise Wurzelziehen?
Wurzelrechnung: Übersicht über die Rechengesetze
Wurzeln gleichnamig machen: Wurzelexponent erweitern
Wurzelgleichungen lösen - Beispiele und Übungen
Wurzeln addieren und subtrahieren
Wurzeln multiplizieren und dividieren
Wurzeln potenzieren und radizieren
Wie bestimme ich eine Definitionsmenge?
Mengen und Elemente in der Mathematik
Leere Menge, Teilmenge, Schnittmenge und Vereinigungsmenge
Überblick: Zahlenmengen einfach erklärt
ganze Zahlen
Zahlenmengen: natürliche und ganze Zahlen
Primzahlen: Besondere Zahlen
Zahlenmengen im Vergleich
Zahlenmengen: rationale, irrationale und reelle Zahlen
Was ist ein Intervall?
Zahlenstrahl
Zahlenstrahl, Zahlengerade, Betragsfunktion einfach erklärt
Polynomdivision - so funktioniert's
Polynomdivision - so funktioniert's
Was bedeutet der Rest bei Polynomdivisionen?
Nullstellen berechnen mit Polynomdivision
Proportionale und antiproportionale Zuordnungen
Verhältnisse berechnen einfach erklärt
Zusammengesetzter Dreisatz - Doppelter Dreisatz
Dreisatz - Aufgaben, Erklärung und Berechnung
Die vier Regeln zur Multiplikation rationaler Zahlen
Multiplizieren und Dividieren rationaler Zahlen - so funktioniert's
Was sind rationale Zahlen? Eine einfache Erklärung
Regeln zur Addition rationaler Zahlen
Rechnen mit rationalen Zahlen
Vedische Mathematik - Multiplikation Rechentricks
Kopfrechnen: zweistellige Zahlen multiplizieren
Grundrechenart: so funktioniert die Addition
schriftliche Division Beispiel: 112 : 4
Grundrechenart: so funktioniert die Division
schriftliche Multiplikation
Multiplizieren - Grundrechenart in der Mathematik
Subtraktionsstrahl
Schriftliches Subtrahieren - so geht's richtig!
das kleine Ein-Mal-Eins
Das kleine und das große Einmaleins - Tabelle und Übungen
Schriftliche Multiplikation von 24 mal 2
Schriftliche Multiplikation - Aufgaben und Einführung
Erster Schritt der Beispieldivision
Schriftlich Dividieren mit Komma
Assoziativgesetz - Übungen & Aufgaben
So funktioniert die Punkt- vor Strichrechnung
Distributivgesetz - Übungen, Erklärung & Aufgaben
Kommutativgesetz - Übungen & Aufgaben
Was ist ein Term in der Mathematik?
Termumformungen und Klammern - Übungen
R?mische Zahlensymbole
Römische Zahlen und Ziffern richtig lesen und umrechnen
Zahlenstrahl von 1 bis 10
Zahlen der Größe nach ordnen und vergleichen
Zahlen runden - Mit diesen Regeln geht's richtig
Drei verschiedene Dreiecke
Maßstab umrechnen und berechnen - so geht's richtig!
Bin?rsystem
Zweiersystem/Dualsystem leicht erklärt
Wie berechnet man den größten gemeinsamen Teiler (ggT)?
Division von 472 durch 8
Teilbarkeitsregeln: Endziffernregel
Teilbarkeitsregeln: Quersummenregel
Summen- und Differenzenregel - Teilbarkeit
Kleinstes gemeinsames Vielfaches (kgV) berechnen
Zerlegungstabelle der zahl 60
Primfaktor­zerlegung: Primfaktoren berechnen
Teiler und Vielfache einer Zahl
uhr
Zeiteinheiten umrechnen - Tabelle und Übungen
umwandlung_flaeche
Fläche und Volumen - Einheiten umrechnen
umwandlung_von_t_in_mg
Gewichtseinheiten umrechnen - Tabelle
umwandlung_meter
Längeneinheiten umrechnen - Tabelle und Übungen
Grundwert, Prozentwert, Prozentsatz einfach erklärt
Prozentuale Veränderung, Prozentfaktor und -satz
Promille berechnen und in Prozent umrechnen
Zusammenhang zwischen Prozentangabe und Dezimalzahl.
Wie funktioniert die Prozentrechnung?
Zinseszins: Formel und Erklärung
Zinsrechnung: Formeln und Übungen
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom

Alle super freundlich.

Kerstin B., vom

Die Kommunikation mit dem Studienkreis in Brühl zwischen Leitung, Eltern und Kind ist schnell, direkt und ausführlich erklärt. Mein Sohn hat nur positive Erfahrungen bis jetzt dort gemacht.

Claudia B., vom

Mein Sohn kam mit einer 5 in Mathe und einer 4 in Englisch zum Studienkreis! Innerhalb von 1 1/2 Jahren hat er sich hier in Mathe auf eine 2 und Englisch eine 3 verbessern können. Durch kompetente Lehrkräfte, die den Stoff mit Spaß vermitteln hat Lucas sogar seinen Realschulabschluss mit Qualifikation geschafft. Wir würden immer wieder diesen Weg wählen.

Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
WirtschaftsWoche - Höchstes Kundenvertrauen
DtGV-App-Award 2021
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 Probestunden GRATIS & unverbindliche Beratung

In den Probestunden kann Ihr Kind uns testen und die Nachhilfe im Studienkreis kennenlernen.

In einem unverbindlichen Beratungsgespräch mit Ihnen, finden wir gemeinsam die optimale Förderung für Ihr Kind.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2 x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7976