Mathematik > Zahlenlehre und Rechengesetze

Proportionale und antiproportionale Zuordnungen

Inhaltsverzeichnis:

In diesem Kapitel behandeln wir proportionale und antiproportionale Zuordnungen oder auch Zusammenhänge. Diese bilden die Basis für das Rechnen mit dem Dreisatz. Im Anschluss kannst du ja mit den Übungsaufgaben weiterlernen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Proportionale Zuordnungen

Damit du den Dreisatz anwenden kannst muss ein proportionaler Zusammenhang (oder antiproportionaler Zusammenhang) zwischen bestimmten Werten gegeben sein. Doch was genau ist ein proportionaler Zusammenhang? Hierzu ein Beispiel:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Wir gehen in den Supermarkt und kaufen 7 Flaschen Wasser. An der Kasse erhalten wir eine Rechnung über 3,50 € (wir haben Flaschen ohne Pfand gekauft). Wie teuer wären 14 Flaschen für uns gewesen?

Wenn wir das Ganze untereinander schreiben erkennen wir es besser:

$\textcolor{green}{7\; Flaschen}$ = $\textcolor{blue}{3,50\;€}$

$\textcolor{green}{14\; Flaschen}$ = $\textcolor{blue}{x \;€}$

Wir rechnen also beide Seiten der Gleichung $\cdot 2$ und erhalten auf der linken Seite die $\textcolor{green}{14\; Flaschen}$ und auf der rechten Seite genau $\textcolor{blue}{7 \;€}$. Das ist auch die Lösung für das Beispiel.

Wenn wir also den Dreisatz benutzen wollen, benötigen wir einen Zusammenhang zwischen zwei Werten, hier die Anzahl der Flaschen und der Preis auf der anderen Seite.

Ein proportionaler Zusammenhang ist also ein Zusammenhang, bei dem auf beiden Seiten der Gleichung dieselbe Rechenregel angewendet wird. Wenn wir also auf der einen Seite multiplizieren, müssen wir dies auch auf der anderen Seite tun.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Manchmal ist es jedoch nicht so einfach und man kann nicht mal eben "$\cdot 2$" rechnen. Wie wären wir vorgegangen, wenn wir nicht den Preis von 14, sondern von 10 Flaschen gesucht hätten? Die Rechenschritte hätten sich nicht groß geändert, wir hätten nur einen weiteren Schritt hinzugefügt:

$\textcolor{green}{7\; Flaschen}$ = $\textcolor{blue}{3,50\;€}$

$\textcolor{green}{1\; Flasche}$ = $\textcolor{blue}{y\;€}$

$\textcolor{green}{10\; Flaschen}$ = $\textcolor{blue}{x \;€}$

Wir hätten also erst einmal den Preis für eine Flasche ermittelt und dann den Preis für 10 Flaschen. Der Preis für eine Flasche wäre in unserem Beispiel $0,5\; €$, denn wenn wir beide Seiten durch 7 dividieren erhalten wir 50 Cent als Lösung.

$\textcolor{green}{1\; Flasche}$ = $\textcolor{blue}{0,50\;€}$

Jetzt nur noch mit 10 multiplizieren und wir erhalten:

$\textcolor{green}{10\; Flaschen}$ = $\textcolor{blue}{5 \;€}$

Und damit klärt sich auch, warum es Dreisatz heißt, denn man benötigt zum Berechnen von proportionalen Zusammenhängen 3 "Sätze" um auf die Lösung zu kommen.

Merke

Merke

Hier klicken zum Ausklappen

Bei proportionalen Zusammenhängen werden auf beiden Seiten der Gleichung dieselben Rechenregeln angewandt. Es gilt die Aussage: "Je mehr, desto mehr oder je weniger desto weniger."

Antiproportionale Zuordnungen

Es gibt aber auch manchmal Aufgaben, da hilft einem das Rechnen wie bei proportionalen Zusammenhängen nicht weiter. Siehe dir dazu das folgende Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Fünf Bauarbeiter bauen eine Mauer. Die Arbeit dauert genau 5 Stunden. Wie lange hätte die Arbeit mit 10 Arbeitern gedauert?

Wir stellen zuerst die Gleichungen auf und erhalten:

$\textcolor{green}{5 \;Arbeiter}$ = $\textcolor{blue}{5 \;Stunden}$

$\textcolor{green}{10 \;Arbeiter}$ = $\textcolor{blue}{x \;Stunden}$

Hier können wir nicht einfach wie bei proportionalen Zusammenhängen beide Seiten mit 2 multiplizieren, denn dann würde als Stundenzeit 10 herauskommen und warum sollten mehr Arbeiter länger für eine Aufgabe benötigen?

Hier müssen wir genau gegensätzlich rechnen. Wenn wir auf der einen Seite multiplizieren müssen wir auf der anderen dividieren.

$\textcolor{green}{5 \;Arbeiter}$ = $\textcolor{blue}{5 \;Stunden}$

Wir rechnen $:5$ auf der linken Seite und $\cdot 5$ auf der rechten Seite.

$\textcolor{green}{1 \;Arbeiter}$ = $\textcolor{blue}{25 \;Stunden}$

Ein Arbeiter würde also 25 Stunden benötigen, um die Mauer zu bauen. Jetzt multiplizieren wir die linke Seite mit 10 und die rechte dividieren wir durch 10 und erhalten das Ergebnis für 10 Arbeiter:

$\textcolor{green}{10 \;Arbeiter}$ = $\textcolor{blue}{2,5 \;Stunden}$

Merke

Merke

Hier klicken zum Ausklappen

Bei antiproportionalen Zusammenhängen werden auf beiden Seiten der Gleichung gegensätzliche Rechenregeln angewandt. Es gilt die Aussage: "Je mehr, desto weniger oder je weniger desto mehr."

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

10 Dachdecker decken 1 Dach in 5 Stunden neu. Wie lange brauchen 3 Dachdecker?

Teste dein Wissen!

10 Dachdecker können an einem Tag (8 Stunden Arbeitszeit) genau 5 Dächer neu bedecken. Wie viel können 2 Dachdecker an einem Tag decken?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Peter hat 4 Äpfel für 1,20€ gekauft.
Wie viel hätten ihn 5 Äpfel gekostet?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Zusammenhänge kann man mit dem Dreisatz berechnen?
Kreuze die richtigen Lösungen an.

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Susanne S., vom 2019-10-29
Den Terminwünschen konnte entsprochen werden; kurzfristige Änderungen wurde entgegengekommen; die Leistung hat sich verbessert, das Selbstvertrauen ist gewachsen; wir sind sehr zufrieden
anonymisiert, vom 2019-10-18
Alles freundlich, kompetent und schülerorientiert
Corinna O., vom 2019-10-17
alles gut
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7976