Mathematik > Zahlenlehre und Rechengesetze

Rechnen mit rationalen Zahlen

Inhaltsverzeichnis:

Das Addieren und Subtrahieren von natürlichen Zahlen hast du bereits gelernt. Doch mit der Einführung der rationalen Zahlen kommen auch neue Schwierigkeiten und Herausforderungen hinzu. In diesem Kapitel widmen wir uns der Addition und der Subtraktion von rationalen Zahlen und erklären dir die wichtigsten Regeln. Außerdem findest du am Ende dieses Lerntextes zum Thema Rechnen mit rationalen Zahlen Übungsaufgaben, sodass du sofort auf Online-Arbeitsblättern dein Wissen zu rationalen Zahlen vertiefen und überprüfen kannst.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Im Lerntext Multiplizieren und Dividieren rationaler Zahlen - so funktioniert's erklären wir dir die Regeln und die Vorgehensweise, wenn du rationale Zahlen multiplizieren und dividieren musst. 

Rationale Zahlen

Merke

Merke

Hier klicken zum Ausklappen

Die rationalen Zahlen sind alle Zahlen, die durch ein Verhältnis zweier ganzer Zahlen dargestellt werden können. Vereinfacht gesagt: Alle Zahlen, die als Bruch aus ganzen Zahlen darstellbar sind, zum Beispiel $\frac{5}{2}$.

Ihr Symbol ist das $\mathbb Q$.

Besonders an den rationalen Zahlen ist, dass unendlich viele rationale Zahlen zwischen zwei ganzen Zahlen liegen. Du kannst dir auch Folgendes über die rationalen Zahlen merken:

  • Jede natürliche Zahl ist eine rationale Zahl, zum Beispiel $13$.
  • Jede ganze Zahl ist eine rationale Zahl, zum Beispiel $-5$.
  • Jede positive rationale Zahl ist eine rationale Zahl, zum Beispiel $7,9$.
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Rationale Zahlen addieren - Regeln

Bei der Addition rationaler Zahlen gibt es verschiedene Möglichkeiten, wie du rechnen kannst. So rechnest du nicht nur mit positiven Zahlen, sondern auch mit negativen Zahlen oder sogar Brüchen. Für die Addition solcher rationaler Zahlen gibt es vier Regeln:

Regeln zur Addition rationaler Zahlen
Die vier Regeln zur Addition rationaler Zahlen.

In der Abbildung siehst du die vier Regeln zur Addition rationaler Zahlen. Die erste Regel sollte dir bekannt sein:

Merke

Merke

Hier klicken zum Ausklappen

Regel 1:

Wenn zwei positive Zahlen addiert werden, ergibt sich dabei eine positive Zahl.

Die zweite Regel ist eine der interessanteren Regeln. Wenn wir zu einer positiven Zahl eine negative Zahl addieren wollen, wird aus der Addition eine Subtraktion. 

Aus der Addition: $1 \; + \; (-2)$

entsteht folgendes: $1 \; - \; 2$.

Das liegt daran, dass das Minuszeichen vor der $(-2)$ mit dem $+$ verrechnet wird und es entsteht ein Minuszeichen. Man kann also umgangssprachlich sagen, dass das Minuszeichen einen höheren Wert als das Pluszeichen hat und jedes Mal, wenn du eine negative Zahl addieren willst, eine Subtraktion entsteht.

Merke

Merke

Hier klicken zum Ausklappen

Regel 2:

Wird zu einer positiven Zahl eine negative Zahl addiert, ergibt sich eine Subtraktion.

Die dritte Regel sollte dir auch schon von der Addition ganzer Zahlen bekannt sein. Denn die Addition einer positiven Zahl und einer negativen Zahl ist eine ganz gewöhnliche Addition.

Merke

Merke

Hier klicken zum Ausklappen

Regel 3:

Addiert man zu einer negativen Zahl eine positive Zahl gibt es keine Besonderheiten. Es bleibt bei einer Addition.

Die vierte und letzte Regel der Addition ist wieder etwas interessanter. Hierbei wird zu einer negativen Zahl eine negative Zahl addiert. Das Beispiel lautet: $(-1) \; + \; (-2)$.

Genauso wie bei Regel 2 entsteht eine Subtraktion: $ (-1) \; - \; 2$.

Merke

Merke

Hier klicken zum Ausklappen

Regel 4:

Bei der Addition zweier negativer Zahlen ergibt sich eine Subtraktion beider Zahlen.

Rationale Zahlen subtrahieren - Regeln

Auch bei der Subtraktion gibt es bei solchen rationalen Zahlen vier Regeln. In der Abbildung sehen wir sie genauer:

Regeln der Subtraktion rationaler Zahlen
Die vier Regeln zur Subtraktion rationaler Zahlen.

Die interessanteste der Regeln ist hier die Regel 2. Wir sehen, dass sie Subtraktion einer negativen Zahl zu einer Addition führt. Man kann auch umgangssprachlich sagen: "Minus auf Minus ergibt Plus".

Merke

Merke

Hier klicken zum Ausklappen

Regel 1: Die Subtraktion zweier positiver Zahlen bleibt eine Subtraktion.

Regel 2: Die Subtraktion einer negativen Zahl von einer positiven Zahl führt zu einer Addition zweier positiver Zahlen.

Regel 3: Die Subtraktion einer positiven Zahl von einer negativen Zahl bleibt eine Subtraktion.

Regel 4: Die Subtraktion zweier negativer Zahlen führt zu einer Addition der negativen Zahl mit einer positiven Zahl.

Nun weißt du schon einmal mehr darüber, wie du rationale Zahlen addieren und subtrahieren kannst. Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Addiere folgende rationale Zahlen:
$\frac{1}{3}+ (-\frac{1}{4})$

Teste dein Wissen!

Löse folgenden Term:
$\frac{1}{2}-\frac{3}{4}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Löse den folgenden Term auf:
$\frac{2}{3}+3-\frac{23}{9}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Subtrahiere die folgenden rationalen Zahlen:
$\frac{3}{4}-\frac{1}{3}$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8633