Suche
Kontakt
>
Mathematik > Zahlenlehre und Rechengesetze

Übersicht zu allen Potenzgesetzen

Übersicht zu allen Potenzgesetzen! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Du suchst zum Thema Potenzgesetzte eine Übersicht? Dann bist du auf dieser Lernseite genau richtig. Wir erklären dir detailliert das Rechnen mit Potenzen mit den gleichen Exponenten oder den gleichen Basen. Du findest hier zu den Potenzgesetzten Aufgaben mit Lösungen und außerdem bist du nach dieser Lernseite und unserem Video fit im Thema Potenzen. Los gehts!

Potenzen - Eine Übersicht

Potenzen sind nicht nur eine alternative Schreibweise für eine längere Multiplikation, sondern können auch miteinander multipliziert und dividiert werden. Um mit Potenzen zu rechnen, musst du sie nicht jedes Mal ausschreiben. Allerdings musst du eine kleine Anzahl neuer Rechengesetze beachten, die aber - wie du später merken wirst - nicht wirklich kompliziert sind.

Gut zu wissen

Weißt du schon was die Begriffe Exponenten und Basis sind? Oder bist du dir vielleicht noch unsicher mit den beiden Begriffen? In unserem Lerntext Potenzen - Definition und Beispiele kannst du nochmal alles über wichtige Begriffe zum Thema Potenz nachlesen.

Das Rechnen mit Potenzen funktioniert nicht immer. Voraussetzung ist, dass entweder die Basen oder die Exponenten der Potenzen gleich sind. Sollte dies nicht der Fall sein, kannst du keine Berechnungen durchführen.

Wir stellen dir jetzt die verschiedenen Potenzgesetze vor. Wir haben sie aufgeteilt, indem wir sie entweder der Oberkategorie Potenzen mit der gleichen Basis oder der Oberkategorie Potenzen mit dem gleichen Exponenten zugeordnet haben. Sieh selbst:

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Potenzen mit der gleichen Basis

Zunächst schauen wir uns zwei Gesetze an, die gelten, wenn wir Potenzen mit der gleichen Basis multiplizieren oder dividieren möchten. Also zum Beispiel $\textcolor{black}{3^8 \cdot 3^2}$ oder $\textcolor{black}{\frac{3^2}{3^5}}$.

Merke

$(1)$ Potenzen mit gleichen Basen werden $\textcolor{black}{multipliziert}$, indem man die Exponenten addiert und die Basis beibehält.

$\textcolor{black}{ a^m \cdot a^n = a^{m+n}}$                                                                                                      

$ \textcolor{black}{2^3 \cdot 2^7 = 2^{10}}$

 

$(2)$ Potenzen mit gleichen Basen werden $\textcolor{black}{dividiert}$, indem man die Exponenten subtrahiert und die Basis beibehält.              

$\textcolor{black}{\frac{a^m}{a^n} = a^{m-n}}$                                                                                                    

$\textcolor{black}{\frac{5^6}{5^2} = 5^{4}}$

 

 Potenzen mit dem gleichen Exponenten

Nun schauen wir uns zwei Gesetze an, die gelten, wenn wir Potenzen mit dem gleichen Exponenten multiplizieren oder dividieren möchten. Also zum Beispiel $\textcolor{black}{3^8 \cdot 2^8}$ oder $\textcolor{black}{\frac{3^7}{4^7}}$.

Merke

$(1)$ Potenzen mit gleichen Exponenten werden $\textcolor{black}{multipliziert}$, indem man die Basen multipliziert und den Exponenten beibehält.

$\textcolor{black}{a^m\cdot b^m = (a\cdot b)^m}$                                                       

$\textcolor{black}{5^3\cdot 6^3 = 30^3}$

 

$(2)$ Potenzen mit gleichen Exponenten werden $\textcolor{black}{dividiert}$, indem man ihre Basen dividiert und den Exponenten beibehält.

$\textcolor{black}{\frac{a^m}{b^m} = (\frac{a}{b})^m} $                                                

$\textcolor{black}{\frac{9^8}{3^8} = 3^8 }$

Potenzen potenzieren

Eine Potenz kann auch potenziert werden. Wie du dabei vorgehst, zeigen wir dir jetzt. Beim Potenzieren einer Potenz setzt du eine Potenz hoch einem Exponenten, wie zum Beispiel $\textcolor{black}{(5^2)^3}$

Merke

Eine Potenz wird $\textcolor{black}{potenziert}$, indem man die Exponenten multipliziert und die Basis beibehält.                                                         

$\textcolor{black}{(a^m)^n = a^{m\cdot n}}$                                                                                                       

$\textcolor{black}{(7^3)^4 = 7^{12}}$

Nun hast du eine detaillierte Übersicht über die Potenzgesetze bekommen. Zur Vertiefung dieses Wissens, teste dich in unseren Übungen. Dabei wünschen wir dir viel Spaß und Erfolg!

 

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie viele Potenzgesetze zum Rechnen mit Potenzen, deren Exponenten gleich sind, kennst du?

Teste dein Wissen!

Bei welchem Term kannst du folgendes Potenzgesetz anwenden?

$ a^m \cdot a^n = a^{m+n}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bei welchem Term kannst du folgendes Potenzgesetz anwenden?

$a^m\cdot b^m = (a\cdot b)^m$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wann helfen dir die Potenzgesetze?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

09.09.2024 , von Meryem S.
Sehr zufrieden! Ich wünschte ich hätte viel eher mich dazu entschieden. Lehrer sowie Leitung sind hilfsbereit und stellen sich auf die Bedürfnisse des Kindes ein. Vielen Dank dafür
09.09.2024 , von Svetlana S.
Freundliche und professionelle Mitarbeiter
09.09.2024 , von Juliane L.
Gute Kommunikation mit der Leitung Frau Gonser geht individuell Anliegen ein . Innerhalb von wenigen Tagen konnten Nachhilfe Stunden starten
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8693