Mathematik > Zahlenlehre und Rechengesetze

Übersicht zu allen Potenzgesetzen

Inhaltsverzeichnis:

Du suchst zum Thema Potenzgesetzte eine Übersicht? Dann bist du auf dieser Lernseite genau richtig. Wir erklären dir detailliert das Rechnen mit Potenzen mit den gleichen Exponenten oder den gleichen Basen. Du findest hier zu den Potenzgesetzten Aufgaben mit Lösungen und außerdem bist du nach dieser Lernseite und unserem Video fit im Thema Potenzen. Los gehts!

Potenzen - Eine Übersicht

Potenzen sind nicht nur eine alternative Schreibweise für eine längere Multiplikation, sondern können auch miteinander multipliziert und dividiert werden. Um mit Potenzen zu rechnen, musst du sie nicht jedes Mal ausschreiben. Allerdings musst du eine kleine Anzahl neuer Rechengesetze beachten, die aber - wie du später merken wirst - nicht wirklich kompliziert sind.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Weißt du schon was die Begriffe Exponenten und Basis sind? Oder bist du dir vielleicht noch unsicher mit den beiden Begriffen? In unserem Lerntext Potenzen - Definition und Beispiele kannst du nochmal alles über wichtige Begriffe zum Thema Potenz nachlesen.

Das Rechnen mit Potenzen funktioniert nicht immer. Voraussetzung ist, dass entweder die Basen oder die Exponenten der Potenzen gleich sind. Sollte dies nicht der Fall sein, kannst du keine Berechnungen durchführen.

Wir stellen dir jetzt die verschiedenen Potenzgesetze vor. Wir haben sie aufgeteilt, indem wir sie entweder der Oberkategorie Potenzen mit der gleichen Basis oder der Oberkategorie Potenzen mit dem gleichen Exponenten zugeordnet haben. Sieh selbst:

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Potenzen mit der gleichen Basis

Zunächst schauen wir uns zwei Gesetze an, die gelten, wenn wir Potenzen mit der gleichen Basis multiplizieren oder dividieren möchten. Also zum Beispiel $\textcolor{black}{3^8 \cdot 3^2}$ oder $\textcolor{black}{\frac{3^2}{3^5}}$.

Merke

Merke

Hier klicken zum Ausklappen

$(1)$ Potenzen mit gleichen Basen werden $\textcolor{black}{multipliziert}$, indem man die Exponenten addiert und die Basis beibehält.

$\textcolor{black}{ a^m \cdot a^n = a^{m+n}}$                                                                                                      

$ \textcolor{black}{2^3 \cdot 2^7 = 2^{10}}$

 

$(2)$ Potenzen mit gleichen Basen werden $\textcolor{black}{dividiert}$, indem man die Exponenten subtrahiert und die Basis beibehält.              

$\textcolor{black}{\frac{a^m}{a^n} = a^{m-n}}$                                                                                                    

$\textcolor{black}{\frac{5^6}{5^2} = 5^{4}}$

 

 Potenzen mit dem gleichen Exponenten

Nun schauen wir uns zwei Gesetze an, die gelten, wenn wir Potenzen mit dem gleichen Exponenten multiplizieren oder dividieren möchten. Also zum Beispiel $\textcolor{black}{3^8 \cdot 2^8}$ oder $\textcolor{black}{\frac{3^7}{4^7}}$.

Merke

Merke

Hier klicken zum Ausklappen

$(1)$ Potenzen mit gleichen Exponenten werden $\textcolor{black}{multipliziert}$, indem man die Basen multipliziert und den Exponenten beibehält.

$\textcolor{black}{a^m\cdot b^m = (a\cdot b)^m}$                                                       

$\textcolor{black}{5^3\cdot 6^3 = 30^3}$

 

$(2)$ Potenzen mit gleichen Exponenten werden $\textcolor{black}{dividiert}$, indem man ihre Basen dividiert und den Exponenten beibehält.

$\textcolor{black}{\frac{a^m}{b^m} = (\frac{a}{b})^m} $                                                

$\textcolor{black}{\frac{9^8}{3^8} = 3^8 }$

Potenzen potenzieren

Eine Potenz kann auch potenziert werden. Wie du dabei vorgehst, zeigen wir dir jetzt. Beim Potenzieren einer Potenz setzt du eine Potenz hoch einem Exponenten, wie zum Beispiel $\textcolor{black}{(5^2)^3}$

Merke

Merke

Hier klicken zum Ausklappen

Eine Potenz wird $\textcolor{black}{potenziert}$, indem man die Exponenten multipliziert und die Basis beibehält.                                                         

$\textcolor{black}{(a^m)^n = a^{m\cdot n}}$                                                                                                       

$\textcolor{black}{(7^3)^4 = 7^{12}}$

Nun hast du eine detaillierte Übersicht über die Potenzgesetze bekommen. Zur Vertiefung dieses Wissens, teste dich in unseren Übungen. Dabei wünschen wir dir viel Spaß und Erfolg!

 

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie viele Potenzgesetze zum Rechnen mit Potenzen, deren Exponenten gleich sind, kennst du?

Teste dein Wissen!

Bei welchem Term kannst du folgendes Potenzgesetz anwenden?

$ a^m \cdot a^n = a^{m+n}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bei welchem Term kannst du folgendes Potenzgesetz anwenden?

$a^m\cdot b^m = (a\cdot b)^m$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wann helfen dir die Potenzgesetze?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8693