Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Bruchrechnung Brüche vergleichen und ordnen

Brüche vergleichen und ordnen

Im Gegensatz zu den ganzen Zahlen ist es bei Brüchen nicht so einfach auf Anhieb zu entscheiden, ob ein Bruch größer, kleiner oder gleich einem anderen Bruch ist. Je nach Art der Brüche ist es einfacher oder schwieriger die Brüche nach der Größe ihrer Werte zu ordnen.

Gleichnamige Brüche ordnen

Am einfachsten lassen sich gleichnamige Brüche ordnen.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Brüche sind gleichnamig, wenn sie denselben Nenner besitzen.

Bei gleichnamigen Brüchen müssen wir nur auf den Zähler schauen, denn der Bruch mit dem größeren Zähler ist auch der größere Bruch.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\Large{\frac{2}{4}<\frac{3}{4}<\frac{5}{4}}$

weil: $\Large{2<3<5}$

Zählergleiche Brüche

Auch das Vergleichen von Brüchen, deren Zähler denselben Wert haben, ist relativ einfach. Hier müssen wir jetzt auf den Nenner schauen. Dabei gilt: je kleiner der Nenner, desto größer der Bruch. Ein größerer Nenner bedeutet, dass der Zähler in mehrere Teile geteilt wird - der Bruch wird kleiner.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\Large{\frac{8}{16}<\frac{8}{5}<\frac{8}{2}}$

weil: $\Large{16~>~5~>~2}$

Ungleichnamige Brüche

Ungleichnamige Brüche, das heißt Brüche, die weder denselben Nenner noch denselben Zähler haben, können nicht so einfach geordnet werden. Um ungleichnamige Brüche zu vergleichen, müssen sie zunächst gleichnamig gemacht werden. Dies funktioniert, indem wir den Bruch um den Nenner des jeweils anderen Bruchs erweitern. Schauen wir uns dazu ein Beispiel an.

$ \Large{\frac{4}{\textcolor{red}{5}}}$ und $\large{\frac{3}{\textcolor{blue}{9}}}$

I: $\Large{\frac{4 \cdot \textcolor{blue}{9}}{5 \cdot \textcolor{blue}{9}} = \frac{36}{45}}$

II: $\Large{\frac{3 \cdot \textcolor{red}{5}}{9 \cdot \textcolor{red}{5}} = \frac{15}{45}}$

Haben wir die beiden Brüche gleichnamig gemacht, können wir sie wieder nach Größe der Zähler ordnen:

$\Large{\frac{15}{45}<\frac{36}{45}}$

Also: $\Large{\frac{3}{9}<\frac{4}{5}}$

Natürlich können Brüche auch gleichnamig gemacht werden, indem man sie kürzt.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$ \Large{\frac{9}{15}}$ und $\large{\frac{4}{10}}$

Wir kürzen den ersten Bruch mit $\textcolor{black}{3}$ und den zweiten mit $\textcolor{black}{2}$.

I: $\Large{\frac{9 : \textcolor{black}{3}}{15: \textcolor{black}{3}} = \frac{3}{5}}$

II: $\Large{\frac{4 : \textcolor{black}{2} }{10 : \textcolor{black}{2}} = \frac{2}{5}}$

$\Large{\frac{2}{5}<\frac{3}{5}}$

Also: $\Large{\frac{4}{10}<\frac{9}{15}}$

Gemischte Brüche

Ein gemischter Bruch besteht aus einer ganzen Zahl und einem echten Bruch. Um den gemischten Bruch in eine Dezimalzahl umzurechnen, müssen ganze Zahl und Bruch addiert werden.

Bei gemischten Brüchen betrachten wir zunächst die ganze Zahl. Ist diese Zahl bereits größer oder kleiner, können wir gemischte Brüche dementsprechend ordnen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\Large{2 \frac{2}{5}<3\frac{4}{5}}$

$weil: \Large{2<3}$

$2 \frac{2}{5}$ ist also größer als $3 \frac{4}{5}$, obwohl $\frac{2}{5}$ kleiner als $\frac{4}{5}$ ist.

Nur wenn die ganzen Zahlen gleich groß sind, müssen wir auf die Brüche schauen. Diese Brüche können wiederum gleichnamig, zählergleich oder ungleichnamig sein und werden entsprechend geordnet.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\Large{5 \frac{7}{9} < 5\frac{7}{5}}$

$weil: \Large{\frac{7}{9} < \frac{7}{5}}$

Teste dein neu erlerntes Wissen über das Vergleichen und Ordnen von Bruchzahlen in unseren Übungsaufgaben! Viel Erfolg dabei!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8616