Mathematik > Zahlenlehre und Rechengesetze

Brüche kürzen und erweitern - so geht's richtig!

Inhaltsverzeichnis:

Zwei der wichtigsten Methoden im Umgang mit Brüchen sind das Kürzen und das Erweitern von Brüchen. Im Folgenden schauen wir uns beide Methoden ausführlich an.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Brüche kürzen

Um zu verstehen, wie das Kürzen von Brüchen funktioniert und was uns diese Methode bringt, betrachten wir folgendes Beispiel.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Eine Pizza soll zwischen zwei Leuten aufgeteilt werden. Eine ziemlich simple Aufgabe, da die Pizza einfach halbiert werden muss. Durch das Halbieren erhalten wir zwei Stücke Pizza, die jeweils den Anteil $\frac{1}{2}$ haben. Da man dieses große Pizzastück nur schwer mit der Hand essen kann, teilen wir die Hälften nochmal auf. Insgesamt haben wir die Pizza also in vier Viertel geteilt, von denen jeweils zwei Viertel für eine Person sind. Das heißt, dass eine halbe Pizza und zwei Viertel Stücke einer Pizza gleich viel sind.

Einhalb und zwei Viertel.
Ein halb und zwei Viertel.

Brüche können also unterschiedlich aussehen, aber demselben Wert entsprechen:

  • $\frac{1}{2} = 0,5$
  • $\frac{2}{4} = 0,5$

Demnach können wir die Brüche auch gleichsetzen: $\frac{2}{4} = \frac{1}{2}$

Beim Gleichsetzen dieser Brüche haben wir $\frac{2}{4}$ auf $\frac{1}{2}$ gekürzt. Mathematisch ist dies möglich, da beide Brüche für dieselbe Zahl stehen, nämlich $0,5$.

Beim Kürzen von Brüchen geht es also darum, einen Bruch so umzuwandeln, dass die Zahlen in Zähler und Nenner möglichst klein werden, der mathematische Ausdruck aber noch korrekt ist.

Merke

Merke

Hier klicken zum Ausklappen

Beim Kürzen von Brüchen sollen die Zahlen in Zähler und Nenner möglichst klein werden.

Doch wie funktioniert das Kürzen? Muss man sich etwa jedes Mal eine Pizza vorstellen und in einzelne Stücke teilen? Die Antwort ist zum Glück nein, denn das Kürzen von Brüchen funktioniert auch rein rechnerisch.

Um von $\frac{2}{4}$ auf $\frac{1}{2}$ zu kommen werden Zähler und Nenner durch $2$ geteilt.

$\large{\frac{2}{4} = \frac{2\textcolor{red}{:2}}{4\textcolor{red}{:2}} = \frac{1}{2} = 0,5}$

Merke

Merke

Hier klicken zum Ausklappen

Der Wert des Bruchs ändert sich nicht, wenn sowohl Zähler als auch Nenner durch dieselbe Zahl geteilt werden.

Beim Kürzen von Brüchen teilst du Zähler und Nenner durch den größten gemeinsamen Teiler. Diesen Teiler nennt man auch Kürzungszahl.

Die Kürzungszahl oder auch der Teiler ist nichts anderes als die Zahl, durch die sich die Zahl im Zähler und die Zahl im Nenner teilen lassen, ohne eine Kommazahl zu ergeben. Ein Bruch sollte immer vollständig gekürzt werden, das heißt: Nach dem Kürzen gibt es keine weiteren Möglichkeiten, Zähler und Nenner durch einen gemeinsamen Teiler zu teilen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\large{\frac{4}{8} = \frac{4:4}{8:4} = \frac{1}{2}}$

$\large{\frac{27}{18} = \frac{27:9}{18:9} = \frac{3}{2}}$

$\large{\frac{14}{6} = \frac{14:2}{6:2} = \frac{7}{3}}$

$\large{\frac{256}{8} = \frac{256:8}{8:8} = \frac{32}{1}}$

Brüche erweitern

Das Erweitern von Brüchen ist das mathematische Gegenstück zum Kürzen. Während es beim Kürzen von Brüchen darum geht, die Zahlen in Zähler und Nenner möglichst klein zu bekommen, vergrößern wir beim Erweitern von Brüchen die Werte von Zähler und Nenner.

Merke

Merke

Hier klicken zum Ausklappen

Das Erweitern von Brüchen ist das mathematische Gegenstück zum Kürzen von Brüchen.

Beim Erweitern von Brüchen müssen wir die Zahlen in Zähler und Nenner mit einem bestimmten Wert multiplizieren:

$\large{\frac{1}{2} = \frac{1 \textcolor{red}{\cdot 2}}{2 \textcolor{red}{\cdot 2}} = \frac{2}{4} = 0,5}$

Im Gegensatz zum Kürzen, dass in der Regel vollständig passiert, haben wir beim Erweitern von Brüchen keine Grenzen. Wir könnten den obigen Bruch also auch so erweitern:

$\large{\frac{1}{2} = \frac{1 \textcolor{red}{\cdot 30}}{2 \textcolor{red}{\cdot 30}} = \frac{30}{60} = 0,5}$

Merke

Merke

Hier klicken zum Ausklappen

Brüche werden erweitert, indem Zähler und Nenner mit derselben Zahl multipliziert werden.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\large{\frac{3}{4} = \frac{3 \cdot 3}{4 \cdot 3} = \frac{9}{12}}$

$\large{\frac{1}{9} = \frac{1 \cdot 5}{9 \cdot 5} = \frac{5}{45}}$

$\large{\frac{2}{3} = \frac{2 \cdot 2}{3 \cdot 2} = \frac{4}{6}}$

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Viel Erfolg dabei!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Der Bruch soll so erweitert werden, dass im Nenner die Zahl $15$ steht. Wie lautet der Bruch?

$\frac{4}{5}$

Teste dein Wissen!

Wie lässt sich dieser Bruch vollständig kürzen?

$\frac{4}{32}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Beim Erweitern von Brüchen werden Zähler und Nenner mit derselben Zahl ...
Was fehlt? Markiere das gesuchte Wort!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Beim ... von Brüchen soll die Zahl im Zähler und im Nenner möglichst klein werden.
Welcher Begriff fehlt? Markiere das gesuchte Wort.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-10-27
flexibel und fair, 100 prozentiges Eingehen auf die Wünsche der Schüler, die Preise liegen im oberen Preissegment, daher ein Stern weniger
anonymisiert, vom 2020-10-22
ganz zufrieden
anonymisiert, vom 2020-10-21
Unsere Tochter geht sehr gern zu Nachhilfe, es macht ihr spaß. Die ängste bezüglich Mathe gehen langsam weg. Sie hat gemerkt das es nicht unmöglich Mathe zu verstehen, sondern es bedarf nur die richtige Unterstützung. Wir sind sehr zufrieden.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7913