Mathematik > Geometrie

Quader: Fläche und Volumen berechnen

Inhaltsverzeichnis:

Der Quader ist die erste dreidimensionale Figur, die man in der Schule kennenlernt. In diesem Lerntext werden wir die Figur auseinandernehmen, die Begrifflichkeiten klären und auch die ersten Formeln zur Berechnung einführen.

Was ist ein Quader?

Hier erhältst du einen schnellen Überblick über das Wichtigste zur dreidimensionalen Figur, dem Quader.

Methode

Methode

Hier klicken zum Ausklappen
  1. Quader sind dir sicher schon im Alltag begegnet: Ein Würfel, ein Paket oder ein eingepacktes Geschenk sind Quader.
  2. Ein Quader hat 6 Flächen: die vordere Fläche, die hintere Fläche, die Deckfläche, die Grundfläche, die rechte und die linke Seitenfläche.
  3. Ein Quader kann breit und lang sein und die neue Dimension ist die Tiefe.
  4. Die Oberfläche berechnest du mit: $ Umfang\;=\;2 \cdot\; a*b\;+\;2\cdot\; a*c \;+\; 2 \cdot \;b*c$
  5. Das Volumen berechnest du mit: $Volumen \; = \; a \cdot b \cdot c$

Noch nicht alles klar? Du hast jetzt eine kleine Übersicht über den Quader erhalten. Wir möchten dir nun alles etwas detaillierter erklären damit du fit im Thema Quader wirst.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Quader - Die Flächen

Der Quader ist die erste Figur, die du in der Schulzeit kennen lernst, die nicht nur in zwei, sondern in drei Dimensionen dargestellt wird. Um einen Quader also zu zeichnen, benötigst du eine dritte Ebene, dein gewöhnliches Koordinatensystem reicht da nicht aus. Doch schauen wir uns erst einmal einen Quader an und bestimmen die Bezeichnungen, um es danach in einem Koordinatensystem einzeichnen zu können.

Schrägbild eines Quaders
Schrägbild eines Quaders, die gestrichelten Linien befinden sich im Hintergrund

Jeder Quader besteht aus 8 Punkten, die verbunden werden. Der Quader hat verschiedene Seitenflächen, die auch verschiedene Namen bekommen. Die Seitenfläche zwischen den Punkten ABCD ist die Vorderseite. In der nächsten Abbildung sind alle wichtigen Begrifflichkeiten eingezeichnet:

Schrägbild eines Quaders
Schrägbild des Quaders mit Bezeichnungen

In der Abbildung sind die Begriffe für die sechs Seiten des Quaders eingezeichnet. Die Begriffe, die kursiv geschrieben sind, bezeichnen Seitenflächen, die sich im Hintergrund befinden. Klären wir einmal die Begrifflichkeiten:

Merke

Merke

Hier klicken zum Ausklappen

Die Vorderseite, oder auch Vordere Fläche genannt, ist die Seite, auf die man direkt schaut. Sie wird in der Abbildung durch die Punkte ABCD verbunden.

Die Grundfläche ist die Fläche, auf der der Quader steht. Hier durch die Punkte ABGH verbunden.

Die Hintere Fläche liegt gegenüber der Vorderseite und wird in der Abbildung durch die Punkte EFGH verbunden.

Die Deckfläche, oder Deckelseite, ist die obere Seite im Quader. Sie liegt oben auf wie ein Deckel auf einem Topf. Sie wird hier durch die Punkte CDEF verbunden.

Die linke Seitenfläche ist die linke Seite an einem Quader. Sie wird hier durch die Punkte ADEH verbunden.

Die rechte Seitenfläche ist die rechte Seite an einem Quader. Sie wird in der Abbildung durch die Punkte BCFG verbunden.

Doch reichen die Bezeichnungen der Seitenflächen nicht aus, um mit Formeln rechnen zu können. Hierfür benötigen wir wichtige Seitenbezeichnungen, beispielsweise die Höhe. Diese Begrifflichkeiten sehen wir in der nächsten Abbildung:

Schrägbild eines allgemeinen Quaders
Schrägbild des Quaders mit den wichtigen drei Seitenbezeichnungen.

Jeder Quader besteht aus Seiten, die in drei verschiedene Richtungen zeigen, der Höhe, die senkrecht verläuft, wie die y-Achse in einem Koordinatensystem, die Länge, die der x-Achse in einem Koordinatensystem ähnelt und die dritte Seite, die Breite.

In der Abbildung haben wir jede Länge $\textcolor{green}{grün}$, jede Höhe $\textcolor{blue}{blau}$ und jede Breite $\textcolor{red}{rot}$ eingezeichnet.

Merke

Merke

Hier klicken zum Ausklappen

Der Quader besteht aus drei verschiedenen Seiten.

Die Länge bezeichnet die waagerechten Seiten.

Die Höhe bezeichnet die senkrechten Seiten.

Die Breite bezeichnet alle Seiten, die nach "hinten" verlaufen.

Oberfläche und Volumen beim Quader berechnen

Jetzt haben wir alle wichtigen Seitenflächen und Seitenbezeichnungen kennen gelernt und können Formeln verwenden. Bekannt sollten dir von Rechtecken noch der Flächeninhalt und der Umfang sein. Diese Formeln können wir auch beim Quader gebrauchen, jedoch im dreidimensionalen Raum, somit mit anderen Bezeichnungen. Schauen wir uns nun an, wie wir die Oberfläche und das Volumen eines Quaders berechnen:

Um also die Oberfläche eines Quaders auszurechnen, benötigen wir folgende Formel:

$Oberfläche\;=\; Fläche1\;+ \;Fläche2\; +\; Fläche3\; +\; Fläche4\; +\; Fläche5 \;+\; Fläche6$

Vereinfacht ergibt sich: $Oberfläche\;=\;2 \cdot \;Fläche1+ \;2 \cdot \;Fläche2 \;+\;2 \cdot \;Fläche3$

Die Seitenflächen gruppieren sich hierbei in gegenüberliegende Seitenflächen, also gehören die vordere Seite und die hintere Seite zusammen. Genauso gruppieren sich linke und rechte Seitenfläche, als auch Deckfläche und Grundfläche.

Merke

Merke

Hier klicken zum Ausklappen

Oberfläche eines Quaders:

$ Umfang\;=\;2 \cdot\; a*b\;+\;2\cdot\; a*c \;+\; 2 \cdot \;b*c$

Wobei a die Länge, b die Höhe und c die Breite ist.

Das Volumen entspricht dem Flächeninhalt bei zweidimensionalen Figuren und wird auch genauso gebildet. Möchtest du nun das Volumen eines Quaders berechnen, multiplizierst du die drei Seiten miteinander:

Merke

Merke

Hier klicken zum Ausklappen

Das Volumen eines Quaders ist:

$Volumen \; = \; a \cdot b \cdot c$

Wobei a die Länge, b die Höhe und c die Breite ist.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Dabei wünschen wird dir viel Spaß und Erfolg!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Aus wie vielen Flächen besteht der Quader?

Teste dein Wissen!

Welche der Formeln beziehen sich auf den Quader? Markiere die Richtigen!

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche der Aussagen über den Quader sind richtig?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie wird die Breite eines Quaders definiert?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Geometrie

Weitere Erklärungen & Übungen zum Thema

Dreieck mit H?he
Höhensatz des Euklid verstehen und beweisen
Kathetensatz des Euklid
Kathetensatz des Euklid - Was ist das?
Viereck mit zwei rechten Winkeln.
Satz des Pythagoras - Textaufgabe mit Lösungen
Rechtwinkliges Dreieck.
Was ist der Satz des Pythagoras? - Formel und Beweis
Gr??en im Kegelstumpf
Kegelstumpf: Höhe, Volumen und Flächen berechnen
Aufbau eines Kreiskegels.
Kegel: Oberfläche und Volumen berechnen
Kugelsegment
Kugelsegment und Kugelausschnitt
Der Hexaeder
Was sind platonische Körper?
Pyramidenstumpf
Pyramidenstumpf: Volumen und Oberfläche berechnen
Der Quader.
Quader und Würfel: Formeln für Fläche und Volumen
Die Kugel.
Umfang, Oberfläche und Volumen einer Kugel: Formeln
Beispiel zweier Prismen
Was ist ein Prisma? - Volumen und Oberfläche berechnen
Pyramiden im Quader.
Pyramide: Oberfläche und Volumen berechnen
Aufbau eines Zylinders
Zylinder: Oberfläche und Volumen berechnen
scheitelwinkel-2
Winkelarten und Winkeltypen im Überblick
winkel-5
Winkel messen mit einem Geodreieck
winkel-alltag
Was ist ein Winkel und welche Winkelarten gibt es?
winkel zeichnen 4
Winkel zeichnen mit einem Geodreieck
innenwinkelsumme-dreieck
Winkel berechnen - Formel und Aufgaben
uebersicht-winkel.
Winkelarten und Winkeltypen bestimmen
Achsenspiegelung
Achsenspiegelung: Punkte an einer Achse spiegeln
diagonale
Diagonale von Vierecken und Quadraten berechnen
gerade
Gerade, Strecke, Strahl zeichnen - Einführung in die Geometrie
sssdreieckskonstruktion3
Kreis und Dreieck mithilfe eines Zirkels zeichnen
lot faellen 1
Lot fällen - Schritt für Schritt erklärt
mittelsenkrechte-halbieren einer strecke
Wie zeichnet man eine Mittelsenkrechte?
parallel Geraden
So zeichnest du parallele Geraden
punktspiegelung 3
Punktspiegelung - Schritt für Schritt erklärt
Punktspiegelung_zentrum_2
Spiegelpunkt und Spiegelachse konstruieren
punktspiegelung_2_neu
Unterscheidung Achsen- und Punktspiegelung
winkelhalbiente_7
Winkelhalbierende konstruieren und zeichnen
umfangswinkelsatz_beweis2
Peripheriewinkelsatz und Umfangswinkelsatz - Erklärung und Beweis
sssdreieckskonstruktion3
Kongruenzsätze: Dreiecke konstruieren - Erklärung
Bitte Beschreibung eingeben
Kosinus - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Sinus - Rechnen mit der Winkelfunktion
Bitte Beschreibung eingeben
Tangens - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Winkelfunktionen in rechtwinkligen Dreiecken
tricks mit 10
Winkelfunktionen im nicht-rechtwinkligen Dreieck berechnen
tan-1
Winkelfunktionen: Textaufgabe mit Lösung
leicht erkl?rt text 1
Winkelfunktionen: Sinus, Cosinus & Tangens (Formeln)
Zwei ?hnliche Dreiecke
Wie lauten die Kongruenzsätze?
Symmetrie Achsensymmetrie anhand eines Vielecks
Symmetrie von Figuren: Erklärung und Abbildungen
Strahlens?tze Anwendungsbeispiele
Strahlensätze - Aufgaben mit Lösungen
Zweiter Strahlensatz
Erster und zweiter Strahlensatz: Formel und Erklärung
Zentrische Streckung Beispiel
Zentrische Streckung - Einführung & Erklärung
Allgemeine Darstellung eines Dreiecks
Flächeninhalt und Umfang von Dreiecken berechnen
Parallelogramm mit der H?he ha
Flächeninhalt und Umfang eines Parallelogramms berechnen
Fl?cheninhalt eines Parallelogramms
Trapez: Flächeninhalt und Umfang berechnen
drache_bezeichnungen
Drachenviereck - Flächeninhalt und Konstruktion
Von links nach rechts: Quadrat, Parallelogramm, Dreieck, Trapez
Figuren und Flächen in der Mathematik - Eine Einführung
Strecke zwischen A und B
Was ist eine Strecke, eine Halbgerade und eine Gerade?
Eine allgemeine Raute
Raute - Eigenschaften, Flächeninhalt, Umfang berechnen
vielecke
Regelmäßige Vielecke konstruieren und berechnen
zusammengestzte__flaechen_beispiel
Zusammengesetzte Flächen - Flächeninhalt und Umfang
Quadrat (links) und Rechteck (rechts)
Rechtecke und Quadrate: Umfang und Flächeninhalt berechnen
Dreieck mit verl?ngerten Seiten
Ankreis eines Dreiecks konstruieren - Schritt für Schritt erklärt
Umkreismittelpunkt eines Dreiecks
Besondere & ausgezeichnete Punkte im Dreieck
Beispiel f?r ein gleichseitiges Dreieck
Dreiecksarten - Namen und Eigenschaften
Schnittpunkt der Winkelhalbierenden
So konstruierst du Umkreis und Inkreis eines Dreiecks
Dreieck mit H?he
Diese Formeln brauchst du zum Dreieck berechnen!
Rechteck 6 x 4
Dimensionen der Geometrie: Flächen und ihre Berechnung
Schr?gbild eines W?rfels
Körpernetze erstellen - Beispiele und Übungsaufgaben
Schr?gbild eines allgemeinen Quaders
Schrägbilder einfacher Figuren zeichnen
Allgemeines Viereck
Vierecke - Eigenschaften und Arten
Schr?gbild eines allgemeinen Quaders
Dimensionen der Geometrie: Volumen berechnen
Schr?gbild eines allgemeinen Quaders
Quader: Fläche und Volumen berechnen
regelm??iges Oktagon
Vielecke: Arten und Eigenschaften
geraden_kreis
Geraden, Strecken und Winkel am Kreis
pi-beweis
Was ist die Kreiszahl Pi? - Erklärung und Herleitung
satz-des-thales
Satz des Thales - Erklärung und Beweis
kreis-1
Kreis - So berechnest du Flächeninhalt und Umfang!
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Berrin A., vom

Meine Tochter ist zufrieden und kommt gerne

anonymisiert, vom

Alle super freundlich.

Kerstin B., vom

Die Kommunikation mit dem Studienkreis in Brühl zwischen Leitung, Eltern und Kind ist schnell, direkt und ausführlich erklärt. Mein Sohn hat nur positive Erfahrungen bis jetzt dort gemacht.

Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
WirtschaftsWoche - Höchstes Kundenvertrauen
DtGV-App-Award 2021
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 Probestunden GRATIS & unverbindliche Beratung

In den Probestunden kann Ihr Kind uns testen und die Nachhilfe im Studienkreis kennenlernen.

In einem unverbindlichen Beratungsgespräch mit Ihnen, finden wir gemeinsam die optimale Förderung für Ihr Kind.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2 x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8578