Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Prozent- und Zinsrechnung Zinsrechnung: Formeln und Übungen

Zinsrechnung: Formeln und Übungen

Die Zinsrechnung ist eine spezielle Anwendung der Prozentrechnung. Wie der Name schon vermuten lässt, geht es bei der Zinsrechnung primär um die Frage, wie viel Zinsen man erhält, wenn man Geld bei der Bank anlegt. Wichtige Größen der Zinsrechnung sind das Kapital, der Zinssatz sowie die Zinsperiode (das ist der Zeitraum, der betrachtet wird). Dabei unterscheidet man den Jahreszins, den Monatszins und den Tageszins.

Jahreszinsen berechnen

Die Formel, mit der du Jahreszinsen berechnen kannst, sieht folgendermaßen aus:

Merke

Merke

Hier klicken zum Ausklappen

Jahreszins

$\large{Z = \frac{K~ \cdot~ p}{100}}$

Dabei steht $Z$ für die anfallenden Zinsen, $p$ für den Zinssatz und $K$ für das eingesetzte Kapital. Wenn du in die Formel einsetzt, musst du beachten, dass du für $p$ nur die Zahl, ohne das Prozentzeichen, einsetzt. Also, wenn ein Kapital mit $3 \%$ verzinst wird, schreibst du in die Formel nur $3$.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Auf einem Sparbuch werden $1.500~€$ für ein Jahr mit $4 \%$ verzinst. Wie viele Zinsen erhält der Inhaber des Sparbuchs nach einem Jahr?

$\large{Z = \frac{1.500~€ ~ \cdot ~ 4}{100} = 60~€}$

Es gibt noch weitere Fragen, die man bei der Zinsrechnung beantworten muss. Dafür genügt es die Formel für den Jahreszins umzustellen.

Jahreszinssatz berechnen

$\large{p = \frac{Z~\cdot ~100}{K}}$

Jahreszins: Kapital berechnen

$\large{K = \frac{Z~ \cdot ~100}{p}}$

Monatszinsen berechnen

Es kann auch vorkommen, dass Geld nur für einige Monate angelegt wird. Um die Zinsen zu berechnen, die nach einer bestimmten Anzahl an Monaten anfallen, muss die Jahreszinsformel ein wenig erweitert werden.

Merke

Merke

Hier klicken zum Ausklappen

Monatszins

$\large{Z = \frac{K~ \cdot ~p~ \cdot ~m}{100~ \cdot ~12} = \frac{K~ \cdot ~p~ \cdot ~m~}{1.200}}$

Wie beim Jahreszins steht $Z$ für die anfallenden Zinsen, $K$ für das eingesetzte Kapital und $p$ für den Zinssatz ohne Prozentzeichen. Das $m$ steht für die Anzahl der Monate.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Ein Sparbuch mit $2.300~€$ wird über 10 Monate mit $0,5 \%$ verzinst. Wie viel Zinsen erhält der Inhaber des Sparbuchs?

$\large{Z = \frac{2.300 €~ \cdot ~0,5~ \cdot ~10~}{1.200} \approx 9,58~€}$

Auch für den Monatszins kannst du die Formel nach allen Größen umstellen.

Monatszinssatz berechnen

$\large{p = \frac{Z~ \cdot ~1.200}{K~ \cdot ~m}}$

Monatszins: Kapital berechnen

$\large{K =\frac{Z~ \cdot ~1.200}{p~ \cdot ~m}}$

Monatszins: Zeitraum berechnen

$\large{m = \frac{Z~ \cdot ~1.200}{K~ \cdot ~p}}$

Tageszinsen berechnen

Um herauszufinden, wie viele Zinsen für einen Zeitraum von einer bestimmten Anzahl an Tagen anfallen, kannst du folgende Formel nutzen:

Merke

Merke

Hier klicken zum Ausklappen

Tageszins

$\large{Z = \frac{K~ \cdot ~p~ \cdot ~t}{100~ \cdot ~360}= \frac{K~ \cdot ~p~ \cdot ~t}{36.000}}$

Wie beim Jahres- und Monatszins steht $Z$ für die anfallenden Zinsen, $p$ für den Zinssatz und $K$ für das Kapital. Das $t$ steht für die Anzahl der Tage.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Ein Sparbuch mit $10.500~€$ wird über 60 Tage mit $1,5 \%$ verzinst. Wie viel Zinsen erhält der Inhaber des Sparbuchs?

$\large{Z = \frac{10.500~€~ \cdot ~1,5~ \cdot ~60}{100~ \cdot  ~360} = 26,25~€}$

Wie bei den anderen Zinsarten, kannst du auch den Tageszins nach Zinssatz, Kapital und Zeitraum umstellen.

Tageszinssatz berechnen

$\large{p = \frac{Z~ \cdot ~36.000}{K~ \cdot ~t}}$

Tageszins: Kapital berechnen

$\large{K = \frac{Z~ \cdot ~36.000}{p~ \cdot ~t}}$

Tageszins: Zeitraum berechnen

$\large{t = \frac{Z~ \cdot ~36.000}{K~ \cdot ~p}}$

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601