Suche
Kontakt
>
Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Wahrscheinlichkeiten in Baumdiagrammen berechnen

Wahrscheinlichkeiten in Baumdiagrammen berechnen! | Statistik verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Beim Rechnen mit Wahrscheinlichkeiten kann man schnell den Überblick verlieren. Mithilfe eines Baumdiagramms kannst du die Wahrscheinlichkeiten von Wahrscheinlichkeitsversuchen ordnen und somit einfacher berechnen. Ein Baumdiagramm gibt die verschiedenen Wahrscheinlichkeiten bzw. Ausgänge eines Wahrscheinlichkeitsexperiments an. Der große Vorteil solcher Baumdiagramme ist, dass du auch mehrstufige Experimente übersichtlich darstellen kannst.

Einfache Baumdiagramme

Ein gutes Beispiel für ein einfaches Baumdiagramm lässt sich leicht mithilfe des Münzwurf-Versuchs darstellen. Jedes mögliche Ereignis dieses Zufallsversuchs besitzt eine Wahrscheinlichkeit von $50 \%$.

Baumdiagramm zum Münzwurf
Baumdiagramm zum Münzwurf

Die sogenannten Äste des Baumdiagramms führen zu den beiden Möglichkeiten Kopf oder Zahl. Auf diesen Ästen steht jeweils die Wahrscheinlichkeit in der Dezimalschreibweise - in diesem Fall ist die Wahrscheinlichkeit bei beiden möglichen Ergebnissen $0,5$.

Nachdem du die Münze einmal geworfen hast, besteht beim zweiten Wurf für jedes Ergebnis, also Kopf oder Zahl, jeweils wieder eine 50%ige Wahrscheinlichkeit. Man schreibt diese zwei neuen Möglichkeiten einfach an jedes Ereignis, dass sich aus dem ersten Wurf ergeben hat, heran.

Merke

Mithilfe eines Baumdiagramms kannst du die Wahrscheinlichkeiten bei ein- oder mehrstufigen Zufallsexperimenten übersichtlich darstellen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Größere Baumdiagramme erstellen

Ergeben sich bei einem Wahrscheinlichkeitsversuch mehr als zwei Möglichkeiten, die dann auch noch unterschiedliche Wahrscheinlichkeiten besitzen, müssen wir ein größeres Baumdiagramm zeichnen, als es noch beim Münzwurf der Fall war.

Betrachten wir ein Beispiel:

Beispiel

Folgendes Glücksrad wird zweimal hintereinander gedreht. Erstelle ein entsprechendes Baumdiagramm, um die Einzelwahrscheinlichkeiten berechnen zu können.

Glücksrad
Glücksrad

Das entsprechende Baumdiagramm zu dieser Aufgabe sieht folgendermaßen aus:

Bitte Beschreibung eingeben
Baumdiagramm: Zweimaliges Drehen des Glücksrads

Wahrscheinlichkeiten berechnen

In der Abbildung erkennst du außerdem, wie die Wahrscheinlichkeiten der einzelnen Kombinationsmöglichkeiten berechnet werden. Dazu musst du einfach die Wahrscheinlichkeiten auf den entsprechenden Pfaden multiplizieren. Dies nennt man auch die Produktregel.

Merke

Produktregel

Bei einem mehrstufigen Zufallsversuch ist die Wahrscheinlichkeit eines Ereignisses gleich dem Produkt der Wahrscheinlichkeiten entlang des zugehörigen Pfades im Baumdiagramm.

Beispiel

Wir möchten die Wahrscheinlichkeit für die Möglichkeit berechnen, beim ersten Drehen auf einem grünen und beim zweiten Drehen auf einem blauen Feld zu landen. Dazu schauen wir uns den entsprechenden Pfad an:

Einzelner Pfad eines Baumdiagramms.
Einzelner Pfad eines Baumdiagramms.

Um die Wahrscheinlichkeit des Ereignisses "grünes Feld, blaues Feld" zu errechnen, musst du die einzelnen Wahrscheinlichkeiten multiplizieren.

$P (\textcolor{green}{G} \textcolor{blue}{B}) = P(\textcolor{green}{G}) \cdot P(\textcolor{blue}{B})$

$P (\textcolor{green}{G} \textcolor{blue}{B}) = \textcolor{green}{0,5} \cdot \textcolor{blue}{0,2} = 0,1 = 10 \%$

Neben der Produktregel musst du ein weiteres Rechengesetz zur Berechnung von Wahrscheinlichkeiten in Baumdiagrammen kennen: die Summenregel.

Merke

Summenregel

Die Wahrscheinlichkeit einer Ereignismenge von zwei oder mehreren Ereignissen errechnet sich, indem die einzelnen Wahrscheinlichkeiten der Ereignisse addiert werden.

Beispiel

Möchten wir beispielsweise die Wahrscheinlichkeit dafür berechnen, dass mindestens einmal die rote Kugel gezogen wird, müssen wir alle Einzelwahrscheinlichkeiten der Kombinationen, in denen das rote Feld vorkommt, addieren.

$P (E) = P(\textcolor{green}{G} \textcolor{red}{R}) + P (\textcolor{red}{R} \textcolor{green}{G}) + P (\textcolor{red}{RR})  + P(\textcolor{red}{R} \textcolor{blue}{B}) + P (\textcolor{blue}{B} \textcolor{red}{R})$

$P (E) = 0,15 + 0,15 + 0,09 + 0,06 + 0,06 = 0,51 = 51 \%$

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Dabei wünschen wir dir viel Spaß und Erfolg!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie groß ist die Wahrscheinlichkeit, dass beim viermaligen Werfen einer Münze immer die Zahl oben liegt?

Teste dein Wissen!

Wie lautet die Summenregel?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Um die Wahrscheinlichkeit eines einzelnen Ergebnisses eines mehrstufigen Zufallsexperiments zu berechnen, wendet man die ... an.

Welcher Begriff fehlt? Markiere das richtige Wort!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Die Wahrscheinlichkeiten der einzelnen Ergebnisse stehen auf den sogenannten ... des Baumdiagramms.

Was gehört in die Lücke? Markiere das fehlende Wort!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

09.09.2024 , von Meryem S.
Sehr zufrieden! Ich wünschte ich hätte viel eher mich dazu entschieden. Lehrer sowie Leitung sind hilfsbereit und stellen sich auf die Bedürfnisse des Kindes ein. Vielen Dank dafür
09.09.2024 , von Svetlana S.
Freundliche und professionelle Mitarbeiter
09.09.2024 , von Juliane L.
Gute Kommunikation mit der Leitung Frau Gonser geht individuell Anliegen ein . Innerhalb von wenigen Tagen konnten Nachhilfe Stunden starten
Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Weitere Erklärungen & Übungen zum Thema

Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7893