Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Wahrscheinlichkeiten in Baumdiagrammen berechnen

Inhaltsverzeichnis:

Beim Rechnen mit Wahrscheinlichkeiten kann man schnell den Überblick verlieren. Mithilfe eines Baumdiagramms kannst du die Wahrscheinlichkeiten von Wahrscheinlichkeitsversuchen ordnen und somit einfacher berechnen. Ein Baumdiagramm gibt die verschiedenen Wahrscheinlichkeiten bzw. Ausgänge eines Wahrscheinlichkeitsexperiments an. Der große Vorteil solcher Baumdiagramme ist, dass du auch mehrstufige Experimente übersichtlich darstellen kannst.

Einfache Baumdiagramme

Ein gutes Beispiel für ein einfaches Baumdiagramm lässt sich leicht mithilfe des Münzwurf-Versuchs darstellen. Jedes mögliche Ereignis dieses Zufallsversuchs besitzt eine Wahrscheinlichkeit von $50 \%$.

Baumdiagramm zum Münzwurf
Baumdiagramm zum Münzwurf

Die sogenannten Äste des Baumdiagramms führen zu den beiden Möglichkeiten Kopf oder Zahl. Auf diesen Ästen steht jeweils die Wahrscheinlichkeit in der Dezimalschreibweise - in diesem Fall ist die Wahrscheinlichkeit bei beiden möglichen Ergebnissen $0,5$.

Nachdem du die Münze einmal geworfen hast, besteht beim zweiten Wurf für jedes Ergebnis, also Kopf oder Zahl, jeweils wieder eine 50%ige Wahrscheinlichkeit. Man schreibt diese zwei neuen Möglichkeiten einfach an jedes Ereignis, dass sich aus dem ersten Wurf ergeben hat, heran.

Merke

Merke

Hier klicken zum Ausklappen

Mithilfe eines Baumdiagramms kannst du die Wahrscheinlichkeiten bei ein- oder mehrstufigen Zufallsexperimenten übersichtlich darstellen.

Größere Baumdiagramme erstellen

Ergeben sich bei einem Wahrscheinlichkeitsversuch mehr als zwei Möglichkeiten, die dann auch noch unterschiedliche Wahrscheinlichkeiten besitzen, müssen wir ein größeres Baumdiagramm zeichnen, als es noch beim Münzwurf der Fall war.

Betrachten wir ein Beispiel:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Folgendes Glücksrad wird zweimal hintereinander gedreht. Erstelle ein entsprechendes Baumdiagramm, um die Einzelwahrscheinlichkeiten berechnen zu können.

Glücksrad
Glücksrad

Das entsprechende Baumdiagramm zu dieser Aufgabe sieht folgendermaßen aus:

Bitte Beschreibung eingeben
Baumdiagramm: Zweimaliges Drehen des Glücksrads
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Wahrscheinlichkeiten berechnen

In der Abbildung erkennst du außerdem, wie die Wahrscheinlichkeiten der einzelnen Kombinationsmöglichkeiten berechnet werden. Dazu musst du einfach die Wahrscheinlichkeiten auf den entsprechenden Pfaden multiplizieren. Dies nennt man auch die Produktregel.

Merke

Merke

Hier klicken zum Ausklappen

Produktregel

Bei einem mehrstufigen Zufallsversuch ist die Wahrscheinlichkeit eines Ereignisses gleich dem Produkt der Wahrscheinlichkeiten entlang des zugehörigen Pfades im Baumdiagramm.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Wir möchten die Wahrscheinlichkeit für die Möglichkeit berechnen, beim ersten Drehen auf einem grünen und beim zweiten Drehen auf einem blauen Feld zu landen. Dazu schauen wir uns den entsprechenden Pfad an:

Einzelner Pfad eines Baumdiagramms.
Einzelner Pfad eines Baumdiagramms.

Um die Wahrscheinlichkeit des Ereignisses "grünes Feld, blaues Feld" zu errechnen, musst du die einzelnen Wahrscheinlichkeiten multiplizieren.

$P (\textcolor{green}{G} \textcolor{blue}{B}) = P(\textcolor{green}{G}) \cdot P(\textcolor{blue}{B})$

$P (\textcolor{green}{G} \textcolor{blue}{B}) = \textcolor{green}{0,5} \cdot \textcolor{blue}{0,2} = 0,1 = 10 \%$

Neben der Produktregel musst du ein weiteres Rechengesetz zur Berechnung von Wahrscheinlichkeiten in Baumdiagrammen kennen: die Summenregel.

Merke

Merke

Hier klicken zum Ausklappen

Summenregel

Die Wahrscheinlichkeit einer Ereignismenge von zwei oder mehreren Ereignissen errechnet sich, indem die einzelnen Wahrscheinlichkeiten der Ereignisse addiert werden.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Möchten wir beispielsweise die Wahrscheinlichkeit dafür berechnen, dass mindestens einmal die rote Kugel gezogen wird, müssen wir alle Einzelwahrscheinlichkeiten der Kombinationen, in denen das rote Feld vorkommt, addieren.

$P (E) = P(\textcolor{green}{G} \textcolor{red}{R}) + P (\textcolor{red}{R} \textcolor{green}{G}) + P (\textcolor{red}{RR})  + P(\textcolor{red}{R} \textcolor{blue}{B}) + P (\textcolor{blue}{B} \textcolor{red}{R})$

$P (E) = 0,15 + 0,15 + 0,09 + 0,06 + 0,06 = 0,51 = 51 \%$

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Dabei wünschen wir dir viel Spaß und Erfolg!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie groß ist die Wahrscheinlichkeit, dass beim viermaligen Werfen einer Münze immer die Zahl oben liegt?

Teste dein Wissen!

Wie lautet die Summenregel?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Um die Wahrscheinlichkeit eines einzelnen Ergebnisses eines mehrstufigen Zufallsexperiments zu berechnen, wendet man die ... an.

Welcher Begriff fehlt? Markiere das richtige Wort!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Die Wahrscheinlichkeiten der einzelnen Ergebnisse stehen auf den sogenannten ... des Baumdiagramms.

Was gehört in die Lücke? Markiere das fehlende Wort!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Weitere Erklärungen & Übungen zum Thema

Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7893