Wahrscheinlichkeiten in Baumdiagrammen berechnen
Beim Rechnen mit Wahrscheinlichkeiten kann man schnell den Überblick verlieren. Mithilfe eines Baumdiagramms kannst du die Wahrscheinlichkeiten von Wahrscheinlichkeitsversuchen ordnen und somit einfacher berechnen. Ein Baumdiagramm gibt die verschiedenen Wahrscheinlichkeiten bzw. Ausgänge eines Wahrscheinlichkeitsexperiments an. Der große Vorteil solcher Baumdiagramme ist, dass du auch mehrstufige Experimente übersichtlich darstellen kannst.
Einfache Baumdiagramme
Ein gutes Beispiel für ein einfaches Baumdiagramm lässt sich leicht mithilfe des Münzwurf-Versuchs darstellen. Jedes mögliche Ereignis dieses Zufallsversuchs besitzt eine Wahrscheinlichkeit von $50 \%$.

Die sogenannten Äste des Baumdiagramms führen zu den beiden Möglichkeiten Kopf oder Zahl. Auf diesen Ästen steht jeweils die Wahrscheinlichkeit in der Dezimalschreibweise - in diesem Fall ist die Wahrscheinlichkeit bei beiden möglichen Ergebnissen $0,5$.
Nachdem du die Münze einmal geworfen hast, besteht beim zweiten Wurf für jedes Ergebnis, also Kopf oder Zahl, jeweils wieder eine 50%ige Wahrscheinlichkeit. Man schreibt diese zwei neuen Möglichkeiten einfach an jedes Ereignis, dass sich aus dem ersten Wurf ergeben hat, heran.
Merke
Merke
Mithilfe eines Baumdiagramms kannst du die Wahrscheinlichkeiten bei ein- oder mehrstufigen Zufallsexperimenten übersichtlich darstellen.
Größere Baumdiagramme erstellen
Ergeben sich bei einem Wahrscheinlichkeitsversuch mehr als zwei Möglichkeiten, die dann auch noch unterschiedliche Wahrscheinlichkeiten besitzen, müssen wir ein größeres Baumdiagramm zeichnen, als es noch beim Münzwurf der Fall war.
Betrachten wir ein Beispiel:
Beispiel
Beispiel
Folgendes Glücksrad wird zweimal hintereinander gedreht. Erstelle ein entsprechendes Baumdiagramm, um die Einzelwahrscheinlichkeiten berechnen zu können.

Das entsprechende Baumdiagramm zu dieser Aufgabe sieht folgendermaßen aus:

- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Wahrscheinlichkeiten berechnen
In der Abbildung erkennst du außerdem, wie die Wahrscheinlichkeiten der einzelnen Kombinationsmöglichkeiten berechnet werden. Dazu musst du einfach die Wahrscheinlichkeiten auf den entsprechenden Pfaden multiplizieren. Dies nennt man auch die Produktregel.
Merke
Merke
Produktregel
Bei einem mehrstufigen Zufallsversuch ist die Wahrscheinlichkeit eines Ereignisses gleich dem Produkt der Wahrscheinlichkeiten entlang des zugehörigen Pfades im Baumdiagramm.
Beispiel
Beispiel
Wir möchten die Wahrscheinlichkeit für die Möglichkeit berechnen, beim ersten Drehen auf einem grünen und beim zweiten Drehen auf einem blauen Feld zu landen. Dazu schauen wir uns den entsprechenden Pfad an:

Um die Wahrscheinlichkeit des Ereignisses "grünes Feld, blaues Feld" zu errechnen, musst du die einzelnen Wahrscheinlichkeiten multiplizieren.
$P (\textcolor{green}{G} \textcolor{blue}{B}) = P(\textcolor{green}{G}) \cdot P(\textcolor{blue}{B})$
$P (\textcolor{green}{G} \textcolor{blue}{B}) = \textcolor{green}{0,5} \cdot \textcolor{blue}{0,2} = 0,1 = 10 \%$
Neben der Produktregel musst du ein weiteres Rechengesetz zur Berechnung von Wahrscheinlichkeiten in Baumdiagrammen kennen: die Summenregel.
Merke
Merke
Summenregel
Die Wahrscheinlichkeit einer Ereignismenge von zwei oder mehreren Ereignissen errechnet sich, indem die einzelnen Wahrscheinlichkeiten der Ereignisse addiert werden.
Beispiel
Beispiel
Möchten wir beispielsweise die Wahrscheinlichkeit dafür berechnen, dass mindestens einmal die rote Kugel gezogen wird, müssen wir alle Einzelwahrscheinlichkeiten der Kombinationen, in denen das rote Feld vorkommt, addieren.
$P (E) = P(\textcolor{green}{G} \textcolor{red}{R}) + P (\textcolor{red}{R} \textcolor{green}{G}) + P (\textcolor{red}{RR}) + P(\textcolor{red}{R} \textcolor{blue}{B}) + P (\textcolor{blue}{B} \textcolor{red}{R})$
$P (E) = 0,15 + 0,15 + 0,09 + 0,06 + 0,06 = 0,51 = 51 \%$
Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Dabei wünschen wir dir viel Spaß und Erfolg!
Teste dein Wissen!
Wie groß ist die Wahrscheinlichkeit, dass beim viermaligen Werfen einer Münze immer die Zahl oben liegt?
Wie lautet die Summenregel?
Um die Wahrscheinlichkeit eines einzelnen Ergebnisses eines mehrstufigen Zufallsexperiments zu berechnen, wendet man die ... an.
Welcher Begriff fehlt? Markiere das richtige Wort!
Die Wahrscheinlichkeiten der einzelnen Ergebnisse stehen auf den sogenannten ... des Baumdiagramms.
Was gehört in die Lücke? Markiere das fehlende Wort!
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema




Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar

Jetzt registrieren und direkt kostenlos weiterlernen!
Dein Gratis-Lernpaket:
- Lern-Bibliothek: 1 Tag Gratis-Zugang
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
Schon registriert? Hier einloggen

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.
Dein Gratis-Lernpaket:
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Schon registriert? Hier einloggen

Jetzt registrieren und kostenlose Probestunde anfordern.
Dein Gratis-Lernpaket:
- Nachhilfe-Probestunden gratis
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Bereits registriert? Hier einloggen