In der Wahrscheinlichkeitsrechnung bearbeiten wir oft Aufgaben, bei denen es um sogenannte Zufallsversuche geht. Meistens wird in solchen Aufgaben die Wahrscheinlichkeit eines gewünschten Ergebnisses gesucht. Es kann aber auch vorkommen, dass nicht nur ein bestimmtes Ergebnis, sondern gleich mehrere Ergebnisse gewünscht sind. Für eine solche Menge an gewünschten Ergebnissen lernst du in diesem Text einen neuen Begriff kennen: das Ereignis.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
Was ist ein Ereignis?
Merke
Die Gesamtmenge an Ergebnissen eines Zufallsversuchs, die zum Erfolg führen, werden günstige oder gewünschte Ergebnisse genannt. Zusammen bilden sie ein sogenanntes Ereignis.
Beispiel
Wie wahrscheinlich ist es beim Würfel eines normalen, sechsseitigen Würfels eine gerade Zahl zu würfeln?
Insgesamt befinden sich drei gerade Zahlen auf dem Würfel ($2, 4, 6$). Diese drei gewünschten Ergebnisse bilden ein Ereignis.
Wie berechnet man die Wahrscheinlichkeit eines Ereignisses?
Merke
Für die Wahrscheinlichkeit eines Ereignisses gilt:
Wahrscheinlichkeit eines Ereignisses $=~\Large{\frac{Anzahl~aller~gewünschten~Ergebnisse}{Anzahl~aller~möglichen~Ergebnisse}}$
Existieren insgesamt $m$ gewünschte Ergebnisse und $n$ ist die Anzahl aller möglichen Ergebnisse, schreibt man in der Kurzform auch: $\Large{\frac{m}{n}}$
Spezialfall: Das sichere und das unmögliche Ereignis
Gelten alle möglichen Ergebnisse eines Zufallsversuch auch als gewünschte Ergebnisse, spricht man von einem sicheren Ereignis. Die Wahrscheinlichkeit eines solchen Ereignisses ist $1$ bzw. $100 \%$.
Für den Fall das kein einziges Ergebnis gewünscht ist, spricht man von einem unmöglichen Ereignis, da die Wahrscheinlichkeit bei $0$ liegt.
An diesen zwei extremen Beispielen ist zu erkennen, dass die Wahrscheinlichkeit eines Ereignisses immer zwischen $0$ und $1$ beziehungsweise zwischen $0 \%$ und $100 \%$ liegen muss.
Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!
Teste dein Wissen!
Übungsaufgaben
Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.
Du brauchst mehr Hilfe?
Wir unterstützen Dich!
Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen
Weitere Erklärungen & Übungen zum Thema
Mathematik
> Wahrscheinlichkeitsrechnung und Statistik



