Was ist die Kreiszahl Pi? - Erklärung und Herleitung

Mathematik > Geometrie
Was ist die Kreiszahl Pi? - Erklärung und Herleitung! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Merke

$\pi = 3,14(1592654.....)$

Die Kreiszahl Pi hat das Symbol $\pi$. Sie ist eine mathematische Konstante, die das Verhältnis zwischen dem Umfang eines Kreises zu seinem Durchmesser beschreibt. Wir benötigen diese Zahl in allen möglichen Formeln rund um kreisförmige Berechnungen, aber auch in anderen Bereichen der Mathematik und Physik.

Eine Besonderheit von $\pi$ ist, dass sie irrational ist.  Sie lässt sich nicht durch einen Bruch zweier ganzer Zahlen darstellen. Des Weiteren hat $\pi$ unendlich viele Nachkommastellen und besitzt keine Einheit.

Methode

Formeln mit $\pi$

Flächeninhalt Kreis:
$A = \pi \cdot r^2$

Umfang Kreis:
$U = 2 \cdot \pi \cdot r$

Geschichtliches

Die Menschheit ist schon seit langer Zeit an den Berechnungen rund um den Kreis interessiert. So benötigte man auch früher schon das Verhältnis zwischen dem Durchmesser eines Rades und seinem Umfang. Da $\pi$ genau diesem Verhältnis, zwischen Umfang und Durchmesser entspricht, wurde die Zahl im Laufe der Zeit immer genauer bestimmt.
Bereits 250 v. Chr. gelang es Archimedes die Zahl mit einem 96-Eck abzuschätzen. Erst über 2000 Jahre später bewies Johann Heinrich Lambert, dass die Zahl irrational ist. Das bedeutet, dass die Zahl nicht durch einen Bruch zweier ganzer Zahlen dargestellt werden kann.
Heutzutage wird immer noch an den billionsten Nachkommastellen geforscht.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Herleitung

Es gibt verschiedene Arten $\pi$ herzuleiten. Diese sind jedoch alle sehr kompliziert. Daher schauen wir uns hier eine einfache Herleitung an.

Für den Beweis benötigen wir die Formel des Umfangs eines Kreises.
$U=d\cdot \pi$
Der Durchmesser des Kreises soll $1 cm$ groß sein. Diesen Kreis zeichnen wir nun auf und messen anschließend den Umfang.

pi-beweis
Abbildung Kreis mit Umfang

Das Programm hat gemessen, dass der Umfang des Kreises mit einem Durchmesser von $1 cm$ ungefähr $3,14 cm$ groß ist. Damit haben wir die Formel $U = \pi \cdot d$ bewiesen, aber auch gezeigt, dass $\pi$ ungefähr $3,14$ sein muss. Dabei hat $\pi$ keine Einheit.
Du kannst dies selbst einmal versuchen. Dafür musst du deinen Zirkel auf zum Beispiel $5 cm$ einstellen. Der Kreis, der dann entsteht, hat einen Durchmesser von $10 cm$. Nun kannst du einen Faden nehmen und ihn auf den Umfang legen und danach die Länge des Fadens ausmessen. Er sollte dann ungefähr $31,4 cm$ lang sein.

Gut zu wissen

Für alle beliebigen Kreise gilt: Pi ist gleich dem Umfang geteilt durch den Durchmesser. $\rightarrow \pi = \frac{U}{d}$

Wir hätten auch mit der Formel des Flächeninhalts $\pi$ abschätzen können. Denn aus $A = \pi \cdot r^2$ ergibt sich $\rightarrow \pi = \frac{A}{r^2}$.

Bogenmaß

Das Bogenmaß ist eine Art Winkelgrößen anzugeben. Die Kreiszahl $\pi$ ist ein Teil des Bogenmaßes. Meistens werden Winkel in Grad angegeben. Aber ein Winkel von $45^\circ$ kann auch im Bogenmaß, $\frac{1}{4}\pi \approx 0,79$, angegeben werden. In der Schule wird der Winkel meist in Grad angegeben, aber z.B. in der Analysis kommt das Bogenmaß vermehrt zum Einsatz.
Der Winkel wird durch die Länge des entsprechenden Kreisbogens im Einheitskreis angegeben. Die Bogenlänge ist proportional zum Radius. Daraus ergibt sich, dass ein Radius $10 cm$ mit einem Winkel von 1 rad genau $10 cm$ Bogenlänge hat.

Ein ganzer Kreis hat $360^\circ$. Die dazugehörige Bogenlänge beträgt $U = 2\cdot \pi \cdot r$. Da der Radius im Einheitskreis 1 ist, ist das Bogenmaß dann $2\cdot \pi$

Es ergeben sich folgende Umrechnungsformeln:

$1^\circ = \frac{\pi}{180^\circ}rad$

$1rad = 1\cdot \frac{180^\circ}{\pi}\approx 57,3^\circ$

Nun hast du eine detaillierte Übersicht über die Rechnungsmöglichkeiten mit Pi erhalten. Ob du alles verstanden hast, kannst du anhand unserer Übungen testen. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie groß ist die Zahl $\pi$ ungefähr?

Teste dein Wissen!

Welche Formel beschreibt die Größe von $\pi$ ?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In einigen Bereichen der Mathematik wird die Zahl $\pi$ benötigt.
Wofür genau brauchen wir sie?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

An der Zahl $\pi$ wird schon seit vielen Jahren geforscht. Markiere die richtige Antwort.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Geometrie

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7791