Mathematik > Geometrie

Was ist die Kreiszahl Pi? - Erklärung und Herleitung

Inhaltsverzeichnis:

Merke

Merke

Hier klicken zum Ausklappen

$\pi = 3,14(1592654.....)$

Die Kreiszahl Pi hat das Symbol $\pi$. Sie ist eine mathematische Konstante, die das Verhältnis zwischen dem Umfang eines Kreises zu seinem Durchmesser beschreibt. Wir benötigen diese Zahl in allen möglichen Formeln rund um kreisförmige Berechnungen, aber auch in anderen Bereichen der Mathematik und Physik.

Eine Besonderheit von $\pi$ ist, dass sie irrational ist.  Sie lässt sich nicht durch einen Bruch zweier ganzer Zahlen darstellen. Des Weiteren hat $\pi$ unendlich viele Nachkommastellen und besitzt keine Einheit.

Methode

Methode

Hier klicken zum Ausklappen

Formeln mit $\pi$

Flächeninhalt Kreis:
$A = \pi \cdot r^2$

Umfang Kreis:
$U = 2 \cdot \pi \cdot r$

Geschichtliches

Die Menschheit ist schon seit langer Zeit an den Berechnungen rund um den Kreis interessiert. So benötigte man auch früher schon das Verhältnis zwischen dem Durchmesser eines Rades und seinem Umfang. Da $\pi$ genau diesem Verhältnis, zwischen Umfang und Durchmesser entspricht, wurde die Zahl im Laufe der Zeit immer genauer bestimmt.
Bereits 250 v. Chr. gelang es Archimedes die Zahl mit einem 96-Eck abzuschätzen. Erst über 2000 Jahre später bewies Johann Heinrich Lambert, dass die Zahl irrational ist. Das bedeutet, dass die Zahl nicht durch einen Bruch zweier ganzer Zahlen dargestellt werden kann.
Heutzutage wird immer noch an den billionsten Nachkommastellen geforscht.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Herleitung

Es gibt verschiedene Arten $\pi$ herzuleiten. Diese sind jedoch alle sehr kompliziert. Daher schauen wir uns hier eine einfache Herleitung an.

Für den Beweis benötigen wir die Formel des Umfangs eines Kreises.
$U=d\cdot \pi$
Der Durchmesser des Kreises soll $1 cm$ groß sein. Diesen Kreis zeichnen wir nun auf und messen anschließend den Umfang.

pi-beweis
Abbildung Kreis mit Umfang

Das Programm hat gemessen, dass der Umfang des Kreises mit einem Durchmesser von $1 cm$ ungefähr $3,14 cm$ groß ist. Damit haben wir die Formel $U = \pi \cdot d$ bewiesen, aber auch gezeigt, dass $\pi$ ungefähr $3,14$ sein muss. Dabei hat $\pi$ keine Einheit.
Du kannst dies selbst einmal versuchen. Dafür musst du deinen Zirkel auf zum Beispiel $5 cm$ einstellen. Der Kreis, der dann entsteht, hat einen Durchmesser von $10 cm$. Nun kannst du einen Faden nehmen und ihn auf den Umfang legen und danach die Länge des Fadens ausmessen. Er sollte dann ungefähr $31,4 cm$ lang sein.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Für alle beliebigen Kreise gilt: Pi ist gleich dem Umfang geteilt durch den Durchmesser. $\rightarrow \pi = \frac{U}{d}$

Wir hätten auch mit der Formel des Flächeninhalts $\pi$ abschätzen können. Denn aus $A = \pi \cdot r^2$ ergibt sich $\rightarrow \pi = \frac{A}{r^2}$.

Bogenmaß

Das Bogenmaß ist eine Art Winkelgrößen anzugeben. Die Kreiszahl $\pi$ ist ein Teil des Bogenmaßes. Meistens werden Winkel in Grad angegeben. Aber ein Winkel von $45^\circ$ kann auch im Bogenmaß, $\frac{1}{4}\pi \approx 0,79$, angegeben werden. In der Schule wird der Winkel meist in Grad angegeben, aber z.B. in der Analysis kommt das Bogenmaß vermehrt zum Einsatz.
Der Winkel wird durch die Länge des entsprechenden Kreisbogens im Einheitskreis angegeben. Die Bogenlänge ist proportional zum Radius. Daraus ergibt sich, dass ein Radius $10 cm$ mit einem Winkel von 1 rad genau $10 cm$ Bogenlänge hat.

Ein ganzer Kreis hat $360^\circ$. Die dazugehörige Bogenlänge beträgt $U = 2\cdot \pi \cdot r$. Da der Radius im Einheitskreis 1 ist, ist das Bogenmaß dann $2\cdot \pi$

Es ergeben sich folgende Umrechnungsformeln:

$1^\circ = \frac{\pi}{180^\circ}rad$

$1rad = 1\cdot \frac{180^\circ}{\pi}\approx 57,3^\circ$

Nun hast du eine detaillierte Übersicht über die Rechnungsmöglichkeiten mit Pi erhalten. Ob du alles verstanden hast, kannst du anhand unserer Übungen testen. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie groß ist die Zahl $\pi$ ungefähr?

Teste dein Wissen!

Welche Formel beschreibt die Größe von $\pi$ ?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In einigen Bereichen der Mathematik wird die Zahl $\pi$ benötigt.
Wofür genau brauchen wir sie?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

An der Zahl $\pi$ wird schon seit vielen Jahren geforscht. Markiere die richtige Antwort.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Geometrie

Weitere Erklärungen & Übungen zum Thema

Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-03-15
Alles ist ziemlich unkompliziert.
Alex B., vom 2020-01-31
Sehr bemühte Leitung des Studienkreises.
anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7791