Suche
Kontakt
>
Mathematik > Geometrie

Kreis - So berechnest du Flächeninhalt und Umfang!

Kreis - So berechnest du Flächeninhalt und Umfang! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Der Kreis und seine Fläche?

Was ist eigentlich ein Kreis? Per Definition ist es eine geometrische Figur, bei der alle Punkte den gleichen Abstand zum Mittelpunkt haben.

Ihr wisst sicher alle, wie ein Kreis aussieht. Anhand der nachfolgenden Abbildungen schauen wir uns den Kreis nochmal genauer an.

kreis-1
Abbildung Kreis mit Mittelpunkt

Der Mittelpunkt ist, wie der Name schon sagt, genau in der Mitte des Kreises. Der Abstand zwischen einem Punkt des Kreisrandes und dem Mittelpunkt wird als Radius bezeichnet.

Radius eines Kreises

Wenn du mit dem Zirkel einen Kreis zeichnest, stellst du als erstes einen bestimmten Radius ein. Die Spitze des Zirkels ergibt den Mittelpunkt während du mit der anderen Seite den Kreisrand bzw. die Kreislinie zeichnest. Die Größe dazwischen ist der Radius.

kreis-2
Abbildung Radius - vom Mittelpunkt zum Rand

Der Radius wird vom Mittelpunkt zum Rand gemessen. Der Abstand zwischen dem Mittelpunkt und Kreisrand ist also überall gleich groß, wie es auch schon in der Definition des Kreises beschrieben wurde.

Merke

Der Radius ist Strecke zwischen dem Mittelpunkt und dem Kreisrand eines Kreises.

Kreisberechnung: Durchmesser berechnen

druchmesser
Abbildung Durchmesser

Der Durchmesser läuft von einem Punkt auf dem Rand zu dem Punkt auf der gegenüberliegenden Seite. Dabei ist es wichtig, dass die Gerade durch den Mittelpunkt läuft.

Wie dir wahrscheinlich auffällt, ist der Durchmesser doppelt so groß wie der Radius. Es gilt also:
$d=2\cdot r$ oder auch $r=0,5\cdot d$
Mit diesen Kreisformeln kannst du jeweils den Durchmesser berechnen, indem du ihn in den Radius umrechnest oder umgekehrt.

Merke

Der Durchmesser ist die Strecke zwischen zwei Randpunkten, die durch den Mittelpunkt geht.

Für das Verhältnis zwischen Durchmesser und Radius gilt folgender Zusammenhang: $d=2\cdot r$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Umfang und Kreisfläche berechnen

Fläche Kreis

Die Fläche oder der Flächeninhalt von zweidimensionalen Figuren wird in $m^2$ (Quadratmetern) angegeben. Im Gegensatz zu den rechteckigen Figuren, wie zum Beispiel dem Parallelogramm, können wir den Flächeninhalt des Kreises, also die Kreisfläche, nicht einfach berechnen, indem wir die Breite mit der Höhe multiplizieren. Der Kreis hat keine Ecken oder Kanten, auf die sich diese Formel anwenden lassen könnte. Stattdessen müssen wir auf die Eigenschaften zurückgreifen, die uns der Kreis bietet: den Radius. Eine Kreisfläche berechnet sich wie folgt:

Merke

Kreisfläche berechnen

$A=\pi \cdot r^2$
$A=\frac{\pi \cdot d^2}{4}$

Dabei ist:
A = Flächeninhalt
$\pi =$ Kreiszahl $\approx 3,14$
$r$ = Radius
$d$ = Durchmesser

Beispiel

Ein Kreis hat einen Durchmesser von $10 dm$. Wie groß ist seine Fläche?

Wenn der Kreis einen Durchmesser von $10 dm$ hat, dann beträgt der Radius $5 dm$. Setzen wir dies in die obere Kreisflächen-Formel ein.

$A=\pi \cdot r^2$
$A=\pi \cdot 5dm^2$
$A=\pi \cdot 25dm^2\approx 78,54dm^2$

Natürlich hätten wir auch direkt mit dem Durchmesser rechnen können.
$A=\frac{\pi \cdot d^2}{4}$
$A=\frac{\pi \cdot 10dm^2}{4}$

$A\approx78,54dm^2$

Umfang Kreis

Der Umfang ist der Weg, den man zurücklegen muss, um einmal um einen geometrischen Körper herumzugehen. Er hat die Einheit m (Meter) und errechnet sich für den Kreis mithilfe des Radius und der Kreiszahl $\pi$.

Merke

Kreisumfang berechnen

$U=\pi \cdot d$
$U=2\cdot \pi \cdot r$

Dabei ist:
U = Umfang
$\pi =$ Kreiszahl $\approx 3,14$
$r$ = Radius
$d$ = Durchmesser

Beispiel

Ein Kreis hat einen Durchmesser von $10 dm$. Wie groß ist sein Umfang?

Setzen wir den Wert einfach in die obere Formel für den Umfang vom Kreis ein.
$U=\pi \cdot d$
$U=\pi \cdot 10dm$
$U=\pi \cdot 10dm\approx 31,42dm$

Nun hast du viel über die Berechnung der Fläche eines Kreises erfahren. Teste dein neu erlerntes Wissen zu den Themen Kreisfläche berechnen, Durchmesser berechnen und den Umfang eines Kreises berechnen online mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne die Fläche und den Umfang des Kreises. Der Durchmesser beträgt $7cm~$.

Teste dein Wissen!

Mit welcher Formel kann der Umfang berechnet werden?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Du hast einen Kreis gegeben und sollst den Radius und den Durchmesser berechnen.
Der Umfang des Kreises beträgt $U = 6,28cm$ und der Flächeninhalt ist $A = 3,14cm^2$ groß. Markiere die richtige Antwort!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

aufgabe-1


Wurden $\textcolor{green}{a}$ und $\textcolor{orange}{b}$ richtig benannt? Markiere die richtige Antwort!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

09.09.2024 , von Meryem S.
Sehr zufrieden! Ich wünschte ich hätte viel eher mich dazu entschieden. Lehrer sowie Leitung sind hilfsbereit und stellen sich auf die Bedürfnisse des Kindes ein. Vielen Dank dafür
09.09.2024 , von Svetlana S.
Freundliche und professionelle Mitarbeiter
09.09.2024 , von Juliane L.
Gute Kommunikation mit der Leitung Frau Gonser geht individuell Anliegen ein . Innerhalb von wenigen Tagen konnten Nachhilfe Stunden starten
Mathematik > Geometrie

Weitere Erklärungen & Übungen zum Thema

Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8574