Mathematik > Geometrie

Kreis - So berechnest du Flächeninhalt und Umfang!

Inhaltsverzeichnis:

Der Kreis und seine Fläche?

Was ist eigentlich ein Kreis? Per Definition ist es eine geometrische Figur, bei der alle Punkte den gleichen Abstand zum Mittelpunkt haben.

Ihr wisst sicher alle, wie ein Kreis aussieht. Anhand der nachfolgenden Abbildungen schauen wir uns den Kreis nochmal genauer an.

kreis-1
Abbildung Kreis mit Mittelpunkt

Der Mittelpunkt ist, wie der Name schon sagt, genau in der Mitte des Kreises. Der Abstand zwischen einem Punkt des Kreisrandes und dem Mittelpunkt wird als Radius bezeichnet.

Radius eines Kreises

Wenn du mit dem Zirkel einen Kreis zeichnest, stellst du als erstes einen bestimmten Radius ein. Die Spitze des Zirkels ergibt den Mittelpunkt während du mit der anderen Seite den Kreisrand bzw. die Kreislinie zeichnest. Die Größe dazwischen ist der Radius.

kreis-2
Abbildung Radius - vom Mittelpunkt zum Rand

Der Radius wird vom Mittelpunkt zum Rand gemessen. Der Abstand zwischen dem Mittelpunkt und Kreisrand ist also überall gleich groß, wie es auch schon in der Definition des Kreises beschrieben wurde.

Merke

Merke

Hier klicken zum Ausklappen

Der Radius ist Strecke zwischen dem Mittelpunkt und dem Kreisrand eines Kreises.

Kreisberechnung: Durchmesser berechnen

druchmesser
Abbildung Durchmesser

Der Durchmesser läuft von einem Punkt auf dem Rand zu dem Punkt auf der gegenüberliegenden Seite. Dabei ist es wichtig, dass die Gerade durch den Mittelpunkt läuft.

Wie dir wahrscheinlich auffällt, ist der Durchmesser doppelt so groß wie der Radius. Es gilt also:
$d=2\cdot r$ oder auch $r=0,5\cdot d$
Mit diesen Kreisformeln kannst du jeweils den Durchmesser berechnen, indem du ihn in den Radius umrechnest oder umgekehrt.

Merke

Merke

Hier klicken zum Ausklappen

Der Durchmesser ist die Strecke zwischen zwei Randpunkten, die durch den Mittelpunkt geht.

Für das Verhältnis zwischen Durchmesser und Radius gilt folgender Zusammenhang: $d=2\cdot r$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Umfang und Kreisfläche berechnen

Fläche Kreis

Die Fläche oder der Flächeninhalt von zweidimensionalen Figuren wird in $m^2$ (Quadratmetern) angegeben. Im Gegensatz zu den rechteckigen Figuren, wie zum Beispiel dem Parallelogramm, können wir den Flächeninhalt des Kreises, also die Kreisfläche, nicht einfach berechnen, indem wir die Breite mit der Höhe multiplizieren. Der Kreis hat keine Ecken oder Kanten, auf die sich diese Formel anwenden lassen könnte. Stattdessen müssen wir auf die Eigenschaften zurückgreifen, die uns der Kreis bietet: den Radius. Eine Kreisfläche berechnet sich wie folgt:

Merke

Merke

Hier klicken zum Ausklappen

Kreisfläche berechnen

$A=\pi \cdot r^2$
$A=\frac{\pi \cdot d^2}{4}$

Dabei ist:
A = Flächeninhalt
$\pi =$ Kreiszahl $\approx 3,14$
$r$ = Radius
$d$ = Durchmesser

Beispiel

Beispiel

Hier klicken zum Ausklappen

Ein Kreis hat einen Durchmesser von $10 dm$. Wie groß ist seine Fläche?

Wenn der Kreis einen Durchmesser von $10 dm$ hat, dann beträgt der Radius $5 dm$. Setzen wir dies in die obere Kreisflächen-Formel ein.

$A=\pi \cdot r^2$
$A=\pi \cdot 5dm^2$
$A=\pi \cdot 25dm^2$
$A=\pi \cdot 25\approx 78,54dm^2$

Natürlich hätten wir auch direkt mit dem Durchmesser rechnen können.
$A=\frac{\pi \cdot d^2}{4}$
$A=\frac{\pi \cdot 10dm^2}{4}$
$A=\frac{\pi \cdot 100dm^2}{4}\approx 78,54dm^2$

Umfang Kreis

Der Umfang ist der Weg, den man zurücklegen muss, um einmal um einen geometrischen Körper herumzugehen. Er hat die Einheit m (Meter) und errechnet sich für den Kreis mithilfe des Radius und der Kreiszahl $\pi$.

Merke

Merke

Hier klicken zum Ausklappen

Kreisumfang berechnen

$U=\pi \cdot d$
$U=2\cdot \pi \cdot r$

Dabei ist:
U = Umfang
$\pi =$ Kreiszahl $\approx 3,14$
$r$ = Radius
$d$ = Durchmesser

Beispiel

Beispiel

Hier klicken zum Ausklappen

Ein Kreis hat einen Durchmesser von $10 dm$. Wie groß ist sein Umfang?

Setzen wir den Wert einfach in die obere Formel für den Umfang vom Kreis ein.
$U=\pi \cdot d$
$U=\pi \cdot 10dm$
$U=\pi \cdot 10dm\approx 31,42dm$

Nun hast du viel über die Berechnung der Fläche eines Kreises erfahren. Teste dein neu erlerntes Wissen zu den Themen Kreisfläche berechnen, Durchmesser berechnen und den Umfang eines Kreises berechnen online mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne die Fläche und den Umfang des Kreises. Der Durchmesser beträgt $7cm~$.

Teste dein Wissen!

Mit welcher Formel kann der Umfang berechnet werden?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Du hast einen Kreis gegeben und sollst den Radius und den Durchmesser berechnen.
Der Umfang des Kreises beträgt $U = 6,28cm$ und der Flächeninhalt ist $A = 3,14cm^2$ groß. Markiere die richtige Antwort!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

aufgabe-1


Wurden $\textcolor{green}{a}$ und $\textcolor{orange}{b}$ richtig benannt? Markiere die richtige Antwort!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Geometrie

Weitere Erklärungen & Übungen zum Thema

Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Erika F., vom 2020-11-19
Mein Kind ist erst kurz dabei geht sehr gerne hin alle sehr freundlich für alles Andere ist es noch zu früh
Nadine N., vom 2020-11-17
Meine Tochter geht gern hin.
anonymisiert, vom 2020-11-16
Sehr gute rundum Betreuung!
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8574