Kreis - So berechnest du Flächeninhalt und Umfang!
Der Kreis und seine Fläche?
Was ist eigentlich ein Kreis? Per Definition ist es eine geometrische Figur, bei der alle Punkte den gleichen Abstand zum Mittelpunkt haben.
Ihr wisst sicher alle, wie ein Kreis aussieht. Anhand der nachfolgenden Abbildungen schauen wir uns den Kreis nochmal genauer an.

Der Mittelpunkt ist, wie der Name schon sagt, genau in der Mitte des Kreises. Der Abstand zwischen einem Punkt des Kreisrandes und dem Mittelpunkt wird als Radius bezeichnet.
Radius eines Kreises
Wenn du mit dem Zirkel einen Kreis zeichnest, stellst du als erstes einen bestimmten Radius ein. Die Spitze des Zirkels ergibt den Mittelpunkt während du mit der anderen Seite den Kreisrand bzw. die Kreislinie zeichnest. Die Größe dazwischen ist der Radius.

Der Radius wird vom Mittelpunkt zum Rand gemessen. Der Abstand zwischen dem Mittelpunkt und Kreisrand ist also überall gleich groß, wie es auch schon in der Definition des Kreises beschrieben wurde.
Merke
Merke
Der Radius ist Strecke zwischen dem Mittelpunkt und dem Kreisrand eines Kreises.
Kreisberechnung: Durchmesser berechnen

Der Durchmesser läuft von einem Punkt auf dem Rand zu dem Punkt auf der gegenüberliegenden Seite. Dabei ist es wichtig, dass die Gerade durch den Mittelpunkt läuft.
Wie dir wahrscheinlich auffällt, ist der Durchmesser doppelt so groß wie der Radius. Es gilt also:
$d=2\cdot r$ oder auch $r=0,5\cdot d$
Mit diesen Kreisformeln kannst du jeweils den Durchmesser berechnen, indem du ihn in den Radius umrechnest oder umgekehrt.
Merke
Merke
Der Durchmesser ist die Strecke zwischen zwei Randpunkten, die durch den Mittelpunkt geht.
Für das Verhältnis zwischen Durchmesser und Radius gilt folgender Zusammenhang: $d=2\cdot r$
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Umfang und Kreisfläche berechnen
Fläche Kreis
Die Fläche oder der Flächeninhalt von zweidimensionalen Figuren wird in $m^2$ (Quadratmetern) angegeben. Im Gegensatz zu den rechteckigen Figuren, wie zum Beispiel dem Parallelogramm, können wir den Flächeninhalt des Kreises, also die Kreisfläche, nicht einfach berechnen, indem wir die Breite mit der Höhe multiplizieren. Der Kreis hat keine Ecken oder Kanten, auf die sich diese Formel anwenden lassen könnte. Stattdessen müssen wir auf die Eigenschaften zurückgreifen, die uns der Kreis bietet: den Radius. Eine Kreisfläche berechnet sich wie folgt:
Merke
Merke
Kreisfläche berechnen
$A=\pi \cdot r^2$
$A=\frac{\pi \cdot d^2}{4}$
Dabei ist:
A = Flächeninhalt
$\pi =$ Kreiszahl $\approx 3,14$
$r$ = Radius
$d$ = Durchmesser
Beispiel
Beispiel
Ein Kreis hat einen Durchmesser von $10 dm$. Wie groß ist seine Fläche?
Wenn der Kreis einen Durchmesser von $10 dm$ hat, dann beträgt der Radius $5 dm$. Setzen wir dies in die obere Kreisflächen-Formel ein.
$A=\pi \cdot r^2$
$A=\pi \cdot 5dm^2$
$A=\pi \cdot 25dm^2$
$A=\pi \cdot 25\approx 78,54dm^2$
Natürlich hätten wir auch direkt mit dem Durchmesser rechnen können.
$A=\frac{\pi \cdot d^2}{4}$
$A=\frac{\pi \cdot 10dm^2}{4}$
$A=\frac{\pi \cdot 100dm^2}{4}\approx 78,54dm^2$
Umfang Kreis
Der Umfang ist der Weg, den man zurücklegen muss, um einmal um einen geometrischen Körper herumzugehen. Er hat die Einheit m (Meter) und errechnet sich für den Kreis mithilfe des Radius und der Kreiszahl $\pi$.
Merke
Merke
Kreisumfang berechnen
$U=\pi \cdot d$
$U=2\cdot \pi \cdot r$
Dabei ist:
U = Umfang
$\pi =$ Kreiszahl $\approx 3,14$
$r$ = Radius
$d$ = Durchmesser
Beispiel
Beispiel
Ein Kreis hat einen Durchmesser von $10 dm$. Wie groß ist sein Umfang?
Setzen wir den Wert einfach in die obere Formel für den Umfang vom Kreis ein.
$U=\pi \cdot d$
$U=\pi \cdot 10dm$
$U=\pi \cdot 10dm\approx 31,42dm$
Nun hast du viel über die Berechnung der Fläche eines Kreises erfahren. Teste dein neu erlerntes Wissen zu den Themen Kreisfläche berechnen, Durchmesser berechnen und den Umfang eines Kreises berechnen online mit unseren Übungsaufgaben!
Teste dein Wissen!
Berechne die Fläche und den Umfang des Kreises. Der Durchmesser beträgt $7cm~$.
Mit welcher Formel kann der Umfang berechnet werden?
Du hast einen Kreis gegeben und sollst den Radius und den Durchmesser berechnen.
Der Umfang des Kreises beträgt $U = 6,28cm$ und der Flächeninhalt ist $A = 3,14cm^2$ groß. Markiere die richtige Antwort!
Wurden $\textcolor{green}{a}$ und $\textcolor{orange}{b}$ richtig benannt? Markiere die richtige Antwort!
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema




Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar

Jetzt registrieren und direkt kostenlos weiterlernen!
Dein Gratis-Lernpaket:
- Lern-Bibliothek: 1 Tag Gratis-Zugang
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
Schon registriert? Hier einloggen

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.
Dein Gratis-Lernpaket:
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Schon registriert? Hier einloggen

Jetzt registrieren und kostenlose Probestunde anfordern.
Dein Gratis-Lernpaket:
- Nachhilfe-Probestunden gratis
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Bereits registriert? Hier einloggen